Firebird Generator Guide

A guide on how and when to use generators in Firebird

Frank Ingermann
7 May 2006 — Document version 0.2

Table of Contents

(FgLu 0018 i1 o] o PR PPPPPTPPPPRP 3
What IS thiS @rtiCle @DOUL?oiiiiiiiie e e e e e s e e 3
WO SNOUI FEAH 17 ..t e e e e s e e e e nne e s 3

(€1 g1 = (o g S T= ol OO U PP P PPPPPP 3
WHEE 1S @ JENEIAEONT ... ettt ettt e bttt e et e e e e e e e et e e e e e abn e e e e e nne e e e e e enbe e e e e annneeas 3
WL IS @ SEBOUEINCE?eeiieiitiie ettt ettt e ettt e e ettt e e ekt e e e e e e e e e e mb e et e e e sne e e e e annn e e e e nnreeeenanes 3
Where are generators SIOTEAYoooiiuiiie ettt e e e e e e e e e e e e e 4
What is the maximum value Of 8 gENEIaEON?ooouuiiiiiiiiiie et e e 5
How many generators are available in one database?ccevveiiiiii i 6
Generators and traNSACTIONSc.urrieeiiiiie e e et e et e e s e e e e e e e et e e e e asne e e e e anreeeeaannneeenanns 7

SQL StAteMENLS FOr GENEIBLOISeiiiiitiieeeitte ettt e s st e e e e e et e e e e et e e e e sr e e e e s ne e e e e s nn e e e e annneeeennnees 7
SEALEMENE OVEIVIEWW ...ttt e e et e e et e e e s e e e e e b e e e e st e e e e e nne e e e e nnnnes 7
USE Of gENEIaOr SLALEIMENESeiiiitiiee ettt et e st e e e e e e e e e e s e e e s annr e e e s anrreeeeaans 8

Using generators to Create UNIQUE TOW IDScoiiiiiiiiiiiec et 11
WHY FOW IDS @ 8l17 ...t e e e e 11
One for all Or ONE FOr EACNT ..o 11
Can YOU re-USE JENEIAON VBIUES?ooiuiiiieiiiiii ettt et e e e e s e e e e e e e e nnnn e e e 11
Generators for IDs or auto-iNCrement fFIEIASooiiiiiii i 12

What €lSe 10 dO With gENEIGEONSo..eiieieiiiieie ettt e e e e e e e e e e e ennees 13
Using generators to give e.g. transfer files unique NUMDENSooviiiiiiiiiiieee e 13
Generators as “usage counters’ for SPs to provide basic StatiStiCScvvvvveiiiiveeiiiiiec e 13
Generators to simulate “ Select CouNt(*) TrOM...” ...ooo i 14
Generators to monitor and/or control long-running Stored ProCeduresceevevveieeeeiiinieesniieeeen. 14

AppendixX A: DOCUMENT NISIOMYeieiieiiiii ettt e e e e e e e e e e e s 16

APPENIX B LICENSE NOLICEeeiieiiiiiie ettt e e e e et e e e e e e e ann e e e e s annn e e e e enrees 17

Introduction

What is this article about?

This article explains what Firebird generators are, and how and why you should use them. It is an attempt to
collect all relevant information about generators in a single document.

Who should read it?

Read this articleif you...

» arenot familiar with the concept of generators,

* have questions on using them;

» want to make an Integer column behave like an “ Autolnc” field as found in other RDBM Ss;
» arelooking for examples on how to use generators for 1Ds or other tasks;

» want to know the Firebird word for a*“sequence” in Oracle.

Generator Basics

What is a generator?

Think of agenerator asa*thread-safe” integer counter that lives inside a Firebird database. Y ou can create one
by giving it aname:

CREATE GENERATOR GenTest ;

Then you can get its current value and increase or decrease it just like a“var i:integer” in Delphi, but it is not
always easy to “predictably” set it directly to a certain value and then obtain that same value — it's inside the
database, but outside of transaction control.

What is a sequence?

“Seguence” isthe official SQL term for what Firebird calls a generator. Because Firebird is constantly striving
for better SQL compliance, the term SEQUENCE can be used as a synonym for GENERATOR in Firebird 2 and
up. Infact it is recommended that you use the SEQUENCE syntax in new code.

Although theword “sequence” putsthe emphasis on the series of values generated whereas“ generator” seemsto
refer primarily to the factory that produces these values, thereis no difference at all between aFirebird generator

Firebird Generator Guide

and a sequence. They are just two words for the same database object. Y ou can create a generator and access
it using the sequence syntax, and vice versa.

Thisisthe preferred syntax for creating a generator/sequence in Firebird 2:

CREATE SEQUENCE SeqTest ;

Where are generators stored?

Generator declarations are stored in the RDBSGENERATORS system table. Their values however are stored in
specia reserved pagesinside the database. Y ou never touch those values directly; you access them by means of
built-in functions and statements which will be discussed later on in this guide.

Warning

The information provided in this section is for educational purposes only. Asageneral rule, you should leave
system tables alone. Don't attempt to create or alter generators by writing to RDB$GENERATORS. (A SELECT
won't hurt though.)

The structure of the RDBSGENERATORS system table is as follows:

* RDB$GENERATOR_NAME CHAR(31)
* RDB$GENERATOR_ID SMALLINT
* RDBS$SYSTEM_FLAG SMALLINT

And, as from Firebird 2.0:
* RDB$DESCRIPTION BLOB subtype TEXT

Note that the GENERATOR _ID is— asthe name says—an | Dentifier for each generator, not itsvalue. Also, don't
let your applications store the ID for later use as a handle to the generator. Apart from this making no sense (the
nameisthe handle), the ID may be changed after abackup-restore cycle. The SYSTEM_FLAG is 1 for generators
used internally by the engine, and NULL or O for all those you created.

Now let's have alook at the RDB$GENERATORS table, here with a single self-defined generator:

RDB$GENERATOR_NAME RDB$GENERATOR_ID RDB$SYSTEM_FLAG
RDB$SECURITY_CLASS 1 1
SQL$DEFAULT 2 1
RDB$PROCEDURES 3 1
RDB$EXCEPTIONS 4 1
RDB$CONSTRAINT_NAME 5 1
RDBS$FIELD_NAME 6 1
RDB$INDEX_NAME 7 1
RDB$TRIGGER_NAME 8 1
MY_OWN_GENERATOR 9 NULL

Firebird Generator Guide

Firebird 2 notes

» Firebird 2 saw the introduction of an additional system generator, called RDB$BACKUP_HISTORY. It is
used for the new NBackup facility.

» Eventhough the SEQUENCE syntax is preferred, the RDB$GENERA TORS system table and its columns have
not been renamed in Firebird 2.

What is the maximum value of a generator?

Generators store and return 64-bit valuesin all versions of Firebird. This gives us avalue range of:
=288 2981 or -9,223,372,036,854, 775,808 .. 9,223,372,036,854,775,807

So if you use a generator with starting value 0 to feed aNUMERIC(18) or BIGINT column (both types represent
64-bit integers), and you would insert 1000 rows per second, it would take around 300 million years (1) before it
rollsover. Asitispretty unlikely mankind will still walk on this planet by then (and still use Firebird databases),
that's nothing to be really worried about.

A word of warning though. Firebird speaks two SQL “dialects’: dialect 1 and dialect 3. New databases should
always be created with dialect 3, which is more powerful in a number of respects. Dialect 1 is a compatibility
dialect, to be used only for legacy databases that were first created under InterBase 5.6 or earlier.

One of the differences between thetwo isthat dialect 1 hasno native 64-bit integer type available. NUMERIC(18)
columns for instance are stored internally as DOUBLE PRECISION, which is a floating point type. The biggest
integer typein diaect 1 isthe 32-bit INTEGER.

Indialect 1 asin diaect 3, generators are 64-bit. But if you assign the generated valuesto an INTEGER column
inadialect 1 database, they are truncated to the lower 32 bits, giving an effective range of:

=281 2311 or -2,147,483,648 .. 2,147,483,647

Although the generator itself would go on from 2,147,483,647 to 2,147,483,648 and beyond, the truncated value
would wrap around at this point, giving the impression of a 32-bit generator.

In the situation described above, with 1000 inserts per second, the generator-fed column would now roll over
after 25 days (!!') and that is indeed something to have an eye on. 2%Lisalot, but then again not that much
depending on the situation.

Note

In dialect 3, if you assign generator values to an INTEGER field, all goes well as long as the values lie within
the 32-bit range. But as soon as that range is exceeded, you get a numeric overflow error: dialect 3 is much
stricter on range checking than dialect 1!

Client dialects and generator values

Clientstalking to aFirebird server can set their dialect to 1 or 3, regardless of the database they are connected to.
Itistheclient dialect, not the database dia ect, that determines how Firebird passes generator valuesto the client:

Firebird Generator Guide

» Iftheclientdialectis 1, the server returns generator values astruncated 32-bit integersto the client. But inside
the database they remain 64-bit values and they do not wrap after reaching 2% (even though it may look
that way to the client). Thisistrue both for dialect 1 and dialect 3 databases.

» If the client dialect is 3, the server passes the full 64-bit value to the client. Again, this holds whether the
database dialectis 1 or 3.

How many generators are available in one database?

Since Firebird version 1.0, the number of generators you can have in a single database is limited only by the
maximum assignable ID in the RDB$GENERATORS system table. Being a SMALLINT, this maximum is 2%>-1
or 32767. Thefirst ID isaways 1, so the total number of generators cannot exceed 32767. As discussed before,
there are 8 or 9 system generators in the database, leaving room for at least 32758 of your own. This should be
amply enough for any practical application. And since the number of generators you declare has no effect on
performance, you can feel free to use as many generators asyou like.

Older InterBase and Firebird versions

In the earliest pre-1.0 Firebird versions, as well asin InterBase, only one database page was used to store the
generator values. Therefore, the number of available generatorswaslimited by the page size of the database. The
following table lists how many generators — including system generators — you can have in various InterBase
and Firebird versions (thanks to Paul Reeves for providing the initial information):

Version Page size
1K 2K 4K 8K
InterBase < v.6 247 503 1015 2039
IB 6 and early pre-1.0 Firebird 123 251 507 1019
All later Firebird versions 32767

In InterBase versions prior to 6, generators were only 32 bitswide. This explainswhy these older versions could
store roughly twice the number of generators on the same page size.

Warning

InterBase, at least up to and including version 6.01, would happily let you “create” generators until the total
number reached 32767. What happened if you accessed generators with an ID higher than the number given
in the table above depended on the version:

« InterBase 6 would generate an “invalid block type” error because the calculated location lay outside the one
page that was allocated to generators.

¢ Inearlier versions, if the calculated location lay outside the database, an error would be returned. Otherwise,
if the generator was only read (without increment), the value that just “happened to be” on the calculated
spot was returned. If it was written to, it would overwrite data. This could sometimes lead to an immediate
error, but most of the time it would just silently corrupt your database.

Firebird Generator Guide

Generators and transactions

Assaid, generatorsliveoutside of transaction control. Thissimply meansyou cannot safely “rollback” generators
inside a transaction. There may be other transactions executing at the same time that change the value while
your transaction runs. So once you have requested a generator value, consider it as “gone forever”.

When you start a transaction and then call a generator and get a value of — let's say — 5, it will remain at that
value even if you roll back thetransaction (1). Don't even think of something like“ OK, when | rollback, | can
just do GEN_ID(mygen,-1) afterwardsto set it back to 4”. Thismay work most of the time, but is unsafe because

other concurrent transactions may have changed the value in between. For the same reason it doesn't make sense
to get the current value with GEN_ID(mygen,0) and then increment the value on the client side.

SQL statements for generators

Statement overview

The name of agenerator must be ausual DB meta-identifier: 31 chars maximum, no special characters except the
underscore”_” (unlessyou use quoted identifiers). The SQL commands and statements that apply to generators
are listed below. Their use will be discussed in some detail in the section Use of generator statements.

DDL (Data Definition Language) statements:

CREATE GENERATOR <nane>;
SET GENERATOR <nane> TO <val ue>;
DROP GENERATCR <nane>;

DML (Data Manipulation Language) statementsin client SQL.:
SELECT GEN_I D(<Generat or Name>, <increnent>) FROM RDB$DATABASE;
DML statementsin PSQL (Procedural SQL, available in stored procedures and triggers):

<intvar> = GEN_I D(<GeneratorNane>, <increnent>);

Firebird 2 recommended sytax
Although thetraditional syntax isstill fully supportedin Firebird 2, these aretherecommended DDL equivalents:

CREATE SEQUENCE <nane>;
ALTER SEQUENCE <nanme> RESTART W TH <val ue>;
DROP SEQUENCE <nane>;

And for the DML statements:

Firebird Generator Guide

SELECT NEXT VALUE FOR <SequenceNanme> FROM RDB$DATABASE;
<intvar> = NEXT VALUE FOR <SequenceNane>;

Currently the new syntax does not support an increment other than 1. This limitation will be lifted in a future
version. In the meantime, use GEN_ID if you need to apply another increment value.

Use of generator statements

The availability of statements and functions depends on whether you use them in:

» Client SQL — The language you use when you, as a client, talk to a Firebird server.

» PSQL — The server-side programming language used in Firebird stored procedures and triggers.

Creating a generator (“Insert”)

Client SQL
CREATE GENERATOR <Gener at or Nane>;

Preferred for Firebird 2 and up:

CREATE SEQUENCE <SequenceNane>;

PSQL
Not possible. Since you cannot change database metadatainside SPs or triggers, you cannot create generators
there either.

Note

In FB 1.5 and up, you can circumvent this limitation with the EXECUTE STATEMENT feature.

Getting the current value (“ Select”)

Client SQL
SELECT GEN I D{ <GeneratorNane> 0) FROV RDB$DATABASE;

This syntax is still the only option in Firebird 2.

Firebird Generator Guide

Note

In Firebird's command-line tool isgl there are two additional commands for retrieving current generator
values:

SHOW GENERATOR <Cener at or Nanme>;
SHOW CGENERATORS;

The first reports the current value of the named generator. The second does the same for all non-system
generators in the database.

The preferred Firebird 2 equivalents are, as you could guess:

SHOW SEQUENCE <SequenceNane>;
SHOW SEQUENCES;

Please notice again that these SHOW... commands are only available in the Firebird isgl tool. Unlike
GEN_ID, you can't use them from within other clients (unless these clients are isgl frontends).

PSQL
<intvar> = GEN_I D(<GeneratorNane>, 0);

Firebird 2: same syntax.

Generating the next value (“Update” + “Select”)

Just like getting the current value, this is done with GEN_ID, but now you use an increment value of 1. Firebird
will:

1. get the current generator value;
2. incrementit by 1,
3. return theincremented value.

Client SQL
SELECT GEN I D <GeneratorNane>, 1) FROV RDB$DATABASE;

The new syntax, which is preferred for Firebird 2, is entirely different:

SELECT NEXT VALUE FOR <SequenceNanme> FROM RDB$DATABASE;

PSQL
<intvar> = GEN_I D(<GCeneratorName>, 1);

Preferred for Firebird 2 and up:

<intvar> = NEXT VALUE FOR <SequenceNane>;

Setting a generator directly to a certain value (“Update”)

Client SQL
SET GENERATOR <GCGener at or Nane> TO <Newval ue>;

Firebird Generator Guide

Thisis useful to preset generators to a value other than O (which is the default value after you created it) in
€.g. ascript to create the database. Just like CREATE GENERATOR, thisisaDDL (not DML) statement.

Preferred syntax for Firebird 2 and up:
ALTER SEQUENCE <SequenceNanme> RESTART W TH <Newval ue>;

PSQL
GEN_| D(<Gener at or Name>, <Newval ue> - GEN_ID(<GeneratorNane>, 0));

Warning

This is more of adirty little trick to do what you normally cannot and should not do in SPs and triggers:
setting generators. They are for getting, not setting values.

Dropping a generator (“Delete”)

Client SQL
DROP GENERATOR <GCener at or Nanme>;

Preferred for Firebird 2 and up:

DROP SEQUENCE <SequenceNane>;

PSQL
Not possible, unless... (Same explanation as with Create: you can't — or rather, shouldn't — change metadata

in PSQL.)

Dropping agenerator does not free the space it occupied for use by anew generator. In practice thisrarely hurts,
because most databases don't have the tens of thousands of generators that Firebird allows, so there's bound to
be room for more anyway. But if your database doesrisk to hit the 32767 ceiling, you can free up dead generator
space by performing a backup-restore cycle. This will neatly pack the RDBSGENERATORS table, re-assigning
a contiguous series of 1Ds. Depending on the situation, the restored database may also need less pages for the
generator values.

Dropping generators in old IB and Firebird versions

InterBase 6 and earlier, aswell as early pre-1.0 Firebird versions, do not have a DROP GENERATOR command.
The only way to drop a generator in these versionsis:

DELETE FROM RDB$GENERATORS WHERE RDB$GENERATOR_NAME = ' <CGener at or Nanme>' ;

...followed by a backup and restore.

In these versions, with the maximum number of generatorstypically acouple of hundred, it is much morelikely
that the need will arise to reuse space from deleted generators.

10

Firebird Generator Guide

Using generators to create unique row IDs

Why row IDs at all?

The answer to this question would go far beyond the scope of this article. If you see no need to have a generic,
unique “handle” for every row inside a table, or don't like the idea of “meaningless’ or “surrogate” keys in
general, you should probably skip this section...

One for all or one for each?

OK, so you want row IDs. { author's note: congratulations! :-) }

A major, basic decision to take is whether we'll use one single generator for all the tables, or one generator for
each table. Thisis up to you — but take the following considerations into account.

With the “onefor al” approach, you:

» + need only asingle generator for al your IDs;

» +haveoneinteger number that doesnot only identify your row withinitstable, but within the entire database;
» - havelesspossible ID values per table (this shouldn't really be a problem with 64bit generators...);

» - will soon have to deal with large ID values even in e.g. lookup tables with only a handful of records;

- will likely see gapsin a per-table ID sequence, since generator values are spread throughout all tables.

With the " one for each” approach you:

» - haveto create agenerator for every single “1D'd” table in your database;

» - dways need the combination of ID and table name to uniquely identify any row in any table;

* + haveasimple and robust “insert counter” per table;

* + have a chronological sequence per table: if you find a gap in the ID sequence of atable, then it's caused
either by aDELETE or by afailed INSERT.

Can you re-use generator values?

Well —yes, technically you can. But — NO, you shouldn't. Never. Never ever. Not only that this would destroy
the nice chronological sequence (you can't judge arow's“age’ by just looking at the ID any more), the moreyou
think about it the more headaches it'll give you. Moreover it is an absolute contradiction to the entire concept
of unique row identifiers.

So unless you have good reasons to re-use generator values, and a well-thought-out mechanism to make this
work safely in multi-user/multi-transaction environments, JUST DON'T DO IT!

11

Firebird Generator Guide

Generators for IDs or auto-increment fields

Giving a newly inserted record an ID (in the sense of a unique “serial number”) is easily done with generators
and Before Insert triggers, as we'll seein the following subsections. We start with the assumption that we have
atable called TTEST with acolumn ID declared as Integer. Our generator's name is GIDTEST.

Before Insert trigger, version 1

CREATE TRI GGER trgTTEST Bl _V1 for TTEST
active before insert position O
as
begi n
new.id = gen_id(gidTest, 1);
end

Problems with trigger version 1:

This one does the job all right — but it also “wastes” a generator value in cases where there is aready an ID
supplied in the INSERT statement. So it would be more efficient to only assign a value when there was none
in the INSERT:

Before Insert trigger, version 2

CREATE TRI GGER trgTTEST Bl _V2 for TTEST
active before insert position O

as
begi n
if (new.idis null) then
begin
new.id = gen_id(gidTest, 1);
end
end

Problems with trigger version 2:

Some access components have the *“bad habit” to auto-fill all the columnsin an INSERT. Those not explicitly
set by you get default values — usually O for integer columns. In that case, the above trigger would not work:
it would find that the ID column does not have the state NULL, but the value 0, so it would not generate a new
ID. You could post the record, though — but only one... the second one would fail. It is anyway a good ideato
“ban” 0 asanormal ID value, to avoid any confusion with NULL and O. Y ou could e.g. use a special row with
an ID of 0to store a default record in each table.

Before Insert trigger, version 3

CREATE TRIGGER trgTTEST Bl _V3 for TTEST
active before insert position O
as
begi n
if ((new.id is null) or (new.id = 0)) then

12

Firebird Generator Guide

begi n
new.id = gen_id(gidTest, 1);
end
end

Well, now that we have arobust, working ID trigger, the following paragraphs will explain to you why mostly
you won't need it at all:

The basic problem with IDs assigned in Before Insert triggers is that they are generated on the server side, after
you send the Insert statement from the client. This plainly means there is no safe way to know from the client
side which ID was generated for the row you just inserted.

You could grab the generator value from the client side after the Insert, but in multi-user environments you
cannot be really sure that what you get is your own row's ID (because of the transaction issue).

But if you get a new value from the generator before, and post the Insert with that value, you can simply fetch
the row back with a“Select ... where ID=<genvalue>" to see what defaults were applied or whether columns
were affected by Insert triggers. This works especially well because you usually have a unique Primary Key
index on the ID column, and those are about the fastest indexes you can have —they're unbeatable in selectivity,
and mostly smaller than indexes on CHAR(n) cols (for n>8, depending on character set and collation).

The bottom lineto thisis;

You should create a Before Insert trigger to make absolutely sure every row gets a unique ID, even if no ID
value was supplied from the client side in the Insert statement.

If you have an “ SQL-closed” database (that is, your own application code is the only source for newly inserted
records), then you can leave out the trigger, but then you should always obtain a new generator value from the
database before issuing the Insert statement and include it there. The same, of course, goes for inserts from
within triggers and stored procedures.

What else to do with generators

Here you can find some ideas for usages of generators other than generating unique row IDs.

Using generators to give e.g. transfer files unique numbers

A “classic” usage of generatorsisto ensure unigque, sequential numbers for —well, anything in your application
other than the row |Ds discussed above. When you have an application that is transferring data to some other
system, you can use generators to safely identify a single transfer by labeling it with a generated value. This
greatly helps tracking down problems with interfaces between two systems (and, unlike most of the following,
this does work safely and exactly).

Generators as “usage counters” for SPs to provide basic
statistics

Imagine you just built afantastic new feature into your database with a stored procedure. Now you update your
customer's systems and some time later you'd like to know if the users really use this feature and how often.

13

Firebird Generator Guide

Simple: make a specia generator that only gets incremented in that SP and you're there... with the restriction
that you can't know the number of transactions that were rolled back after or while your SP executed. So in this
case you at least know how often userstried to use your SP :-)

Y ou could further refine this method by using two generators: One getsincremented at the very start of the SP,
another at the very end just before the EXIT. This way you can count how many attempts to use the SP were
succesful: if both generators have the same value, then none of the calls to the SP failed etc. Of course you then
still don't know how many times the transaction(s) invoking your SP were actually committed.

Generators to simulate “ Select count(*) from...”

There isthe known problem with InterBase and Firebird that a SELECT COUNT(*) (with no Where clause) from
aredly large table can take quite a while to execute, since the server must count "by hand" how many rows
there arein the table at the time of the request. In theory, you could easily solve this problem with generators:

» Create aspecia “row counter” generator;
» Make aBefore Insert trigger that incrementsit;
» Make an After Delete trigger that decrementsit.

Thisworks beautifully and makesa*“full” record count needless— just get the current generator value. | stressed
the“intheory” here because the whol e thing goes down the drain when any I nsert statementsfail, because as said
those generators are beyond transaction control. Inserts can fail because of constraints (Unique Key violations,
NOT NULL fieldsbeing NULL, etc.) or other metadata restrictions, or simply because the transaction that issued
the Insert getsrolled back. Y ou have no rowsin the table and still your Insert counter climbs.

So it depends— when you know the rough percentage of Insertsthat fail (you can kindaget a“feeling” for this),
and you're only interested in an estimation of the record count, then this method can be useful even though it's
not exact. From time to time you can do a“normal” record count and set the generator to the exact value (“re-
synchronize’ the generator), so the error can be kept rather small.

There are situations when customers can happily live with an info like “there are about 2.3 million records”
instantly at a mouseclick, but would shoot you if they have to wait 10 minutes or more to see that there are
precisely 2.313.498.229 rows...

Generators to monitor and/or control long-running Stored
Procedures

When you have SPsthat e.g. generate report outputs on large tables and/or complex joins, they can take quite a
while to execute. Generators can be helpful here in two ways: they can provide you with a “ progress counter”
which you can poll periodically from the client side while the SP runs, and they can be used to stop it:

CREATE CGENERATOR gen_spTest Pr ogr ess;
CREATE CGENERATOR gen_spTest St op;

set term?”;

CREATE PROCEDURE spTest (...)
AS
BEA N

(...)

for select <lots of data taking lots of tine>

14

Firebird Generator Guide

do begin
GEN | D(gen_spTest Progress, 1);

I F (GEN_I D(gen_spTest Stop, 0)>0) THEN Exit;

(...normal processing here...)
end
END?

Just arough sketch, but you should get the idea. From the client, you can do a GEN_ID(gen_spTestProgress,0)
asynchronously to the actual row fetching (e.g. in a different thread), to see how many rows were processed,
and display the value in some sort of progresswindow. And you can do a GEN_ID(gen_spTestStop,1) to cancel
the SP at any time from the “outside”.

Although this can be very handy, it has astrong limitation: it's not multi-user safe. If the SP would run simulta-
neously in two transactions, they would mess up the progress generator — they would both increment the same
counter at the same time so the result would be useless. Even worse, incrementing the stop generator would
immediately stop the SP in both transactions. But for e.g. monthly reports that are generated by a single module
run in batch mode, this can be acceptable — as usual, it depends on your needs.

If you want to use this technique and allow users to trigger the SP at any time, you must make sure by other
means that the SP can not be run twice. Thinking about this, | had the ideato use another generator for that: let's
call this one gen_spTestLocked (assuming the initial value of O of course):

CREATE CGENERATOR gen_spTest Progr ess;
CREATE GENERATOR gen_spTest St op
CREATE CGENERATOR gen_spTest Locked,;

set term?”;

CREATE PROCEDURE spTest (...)
AS
DECLARE VARI ABLE | ockcount | NTEGER
BEG N
| ockcount = GEN_| D(gen_spTest Locked, 1) ;
/* very first step: increment the |ocking generator */

if (lockcount=1) then /* _we_ got the lock, continue */
begi n

(..."normal " procedure body here...)
end

| ockcount = GEN_I D(gen_spTest Locked, -1); /* undo the increment */

/* make sure the gen is reset at the very end even when an exception
happens inside the “normal” procedure body: */

WHEN ANY DO
| ockcount = GEN_I D(spTestLocked,-1); /* undo the increnment */
exit;
END®

Note: I'm not yet 100% surethisis absolutely multi-user safe, but it looksrock solid —aslong asno EXIT occurs
inthe normal procedure body, for then the SPwould stop and quit, leaving the generator incremented. The WHEN
ANY clause handles exceptions, but not normal EXITs. Then you'd have to decrement it by hand — but you could
decrement the generator just before the EXIT to avoid this. Given the right precautions, | can't make up any
situation where this mechanism could fail... If you can —let us know!

15

Firebird Generator Guide

Appendix A:

Document history

Theexact filehistory isrecorded in themanual modulein our CV Stree; see http://sourceforge.net/cvs/2group

1d=9028

Revision History

0.1 4 Apr 2006 Fl
0.2 7May 2006 PV

First edition.

Added SEQUENCE syntax and other Firebird 2 info.

Added information on: the importance of client dialects; the SHOW
GENERATOR statement and friends; dropping generators and packing
generator space.

Edited and extended the following sections more or less heavily: Where
are generators stored?, What is the maximum value of a generator?,
How many generators...?, Use of generator statements.

Further editing, additions and corrections to various sections, mainly in
thefirst half of the document. Light editing in second half (starting at
Using generatorsto create unique row 1Ds).

16

http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028

Firebird Generator Guide

Appendix B:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense’); you may only use this Documentation if you comply with the terms of this License. Copies of the
License are available at http://www.firebirdtest.com/file/documentation/reference_manuals/firebird licenses/
Public-Documentation-License.pdf (PDF) and http://www.firebirdtest.com/en/public-documentation-license/
(HTML).

The Original Documentation istitled Firebird Generator Guide.

The Initial Writer of the Original Documentation is. Frank Ingermann.

Copyright (C) 2006. All Rights Reserved. Initial Writer contact: frank at fingerman dot de.
Contributor: Paul Vinkenoog — see document history.

Portions created by Paul Vinkenoog are Copyright (C) 2006. All Rights Reserved. Contributor contact: paul at
vinkenoog dot nl.

17

http://www.firebirdtest.com/file/documentation/reference_manuals/firebird_licenses/Public-Documentation-License.pdf
http://www.firebirdtest.com/file/documentation/reference_manuals/firebird_licenses/Public-Documentation-License.pdf
http://www.firebirdtest.com/en/public-documentation-license/

	Firebird Generator Guide
	Table of Contents
	Introduction
	What is this article about?
	Who should read it?

	Generator Basics
	What is a generator?
	What is a sequence?
	Where are generators stored?
	What is the maximum value of a generator?
	Client dialects and generator values

	How many generators are available in one database?
	Older InterBase and Firebird versions

	Generators and transactions

	SQL statements for generators
	Statement overview
	Firebird 2 recommended sytax

	Use of generator statements
	Creating a generator (“Insert”)
	Getting the current value (“Select”)
	Generating the next value (“Update” + “Select”)
	Setting a generator directly to a certain value
 (“Update”)
	Dropping a generator (“Delete”)
	Dropping generators in old IB and Firebird versions

	Using generators to create unique row IDs
	Why row IDs at all?
	One for all or one for each?
	Can you re-use generator values?
	Generators for IDs or auto-increment fields
	Before Insert trigger, version 1
	Before Insert trigger, version 2
	Before Insert trigger, version 3

	What else to do with generators
	Using generators to give e.g. transfer files unique
 numbers
	Generators as “usage counters” for SPs to provide
 basic statistics
	Generators to simulate “Select count(*) from...”
	Generators to monitor and/or control long-running
 Stored Procedures

	A. Document history
	B. License notice

