Firebird Null Guide

NULL behaviour and pitfalls in Firebird SQL
Paul Vinkenoog

26 January 2007 — Document version 1.0.1

Table of Contents

LAY = A = N PR PPRRRN 4
NULL support in FIrebird SQLooooiiiiiiieiec ettt e e e e e e s et e e e e e e e e e e sarbeaeeeeas 4
TR 1 o 11T oo AN PR 4
LIS (] o o N PP 5
ASSIONING NULL ..ot e s e e e e e e e e s et e e e e e e e s e s n e b e e et eaeessaansntaaeeeeeeeseaanssranneeaeenns 5
Testing DISTINCTNESS (FIT€DIrd 24) ..vvviiiiiee ittt e e e e e e e s e st e e e e e e e e e nnnrnees 5
L= O I] (= = PO 6
NULL 1N OPEFBIIONS ..eeiiiiiiiiiiiee e e e e sttt e e e e e s e et e e e e e e e e s s st ee et eaeeesaasastbaeeeeeeessanansasseeeaaeeessasssereeneaaeesans 6
Mathematical and StriNG OPEraLiONSuueiiiieei it e e s e e s e e e e e e e e st ea e e e e e e e s e enneeees 7
BOOIEAN OPEIALIONSuvviiiiiiee e ittt e e e e e e e e e e e e e e e s se bt e e e e e eaessesasabaaaeeeaeeeesannnnbnaeeeeas 8
Y Ko = [To X o (o] N 0 P SRR 9
Internal fUNCLIONS AN IFECHIVESciiiiiiiii ittt e et e e e s b e e e e e snbneeeean 9
FpLe= g0 I 10 Tod o] PRSP 9
FIRST, SKIP @NO ROWS ...uttuttiutuiututusereresesetareteressssssssrassrsssrer.rsr.............—.—.........................—.—.————— 10
= ([07 (= PP PUPRPPOPPRRN 10
TRE IN PrEAICALE ...ttt e e e e e e e e e e e et eeaae e e s s asabaaeeeeaeessanntrrneeeaens 11
The ANY, SOME and ALL qQUANTITIES ..o e e e e e 13
EXISTS QN0 SINGULAR ...utututuiutututttetstetsrsresssssssssssssssesssssssssssssssssss.s.sssesa.........................—.—.———————. 16
S 0 = OO SPUPRRP 17
0] ST PPPTT R TOPPPPPPPPPP 18
AQOregate TUNCLIONSo e e e s e et e e e e e s e e e e e e e e e s e asntbreeeeeaeeessannraaeeeeeens 19
THE GROUP BY ClAUSEciiiiiiiie ettt ettt ettt ettt e e sttt e e e st e e s bbb e e e e et et e e e nnba e e e e e nnnneee s 20
THE HAVING ClAUSEoiiiiiie ittt ettt et e ettt e e ettt e e e st e e e st e e e e e an b e e e e e nnbb e e e e ennrees 21
Conditional StatemMENS NG IOOPSvvvviiieeeii it e e e s e e e e e e s s es b e e e e e e e s aasstbrreeeeaeeanans 22
[= = 01T 0P PPPT S PPPPTPPP 22
CASE SEBIEIMENTS ...t iee e e e ettt e e ettt e e e e e s e bbbttt e e e e e s s s ae bbbt e e e e e e e e aaaabb bbb e e e e e e e e s aannbbbeeeeeeas 23
WWHILE TOOPS ..ettttteieeieesieetiie et e e e e ettt e e e e e e e et e e e e e e e e s at e e et e eaeeessasaaebaeeeaaeesssansaseeeeaaeeesannsneeees 24
@] 1o o= PRSP 24
Keys and UNIQUE INTICESuuiiiiie ettt e e e e e e e e e e s et e e e e e e s s seaab b e e e eaeeessannsreneeeeeas 24
PHIMAIY KEYS ..eeiiiiiiiie ettt et e e e e e e e e e e et e e e e e s s s st b eeeeeaeeeaesaaaaaaeeeeeaeeeeannneees 24
UNIquE KEYS aNd INAICESeeviiiiiiiee ettt e e e e e e e e e s s e e e e e e e s sanntbeaeeeaaeeeaaans 25
[0 = Ko [T =YL ERPRS 25
CHECK CONSITAINTS ...iiutttetetiittee e ettt e e sttt e sttt e e e ssbt e e e e as b et e e e aabb e et e e aabbe e e e e am b e e e e e aatbe et e e anbbe e e e e anbee e e e anbneeas 25
SELECT DISTINCT iiiiie ittt ettt ettt ra bttt e e sttt e e e bttt e e e e bt e e e e s aab bt e e e e abe e e e e anbbe e e e s annbeeeeennnees 26
User-Defined FUNCHIONS (UDFS) ...uvviiiiii ittt ettt e e e e e st e e e e e e e s s snntaa e e e e e e e s e ennnneees 26
NULL <—> non-NULL conversions you didn't @sk fOrccccuviieiiee e 27
= STor] o (o] PSSR 27
IMprovements in FIreDird 2ooeiiiiiii e e e aa e 27
Being prepared for undeSired CONVEISIONSc.uviiiiiiee e it s s e e e e e e e e e e e e e e s e eaneees 28
IMOPE ON UDFS ...ttt ettt e e e e e s o bbb et et e e e e e e e sab bt e e et e e e e e e s annbbbeeeaeeeeeannnes 29
Converting to @and FromM NULLooiiiiiiiiiieiie e e s s e e e e e e s e st e e e e e e e s s s nntrbaeeeaaeesssensnrnnees 29
Substituting NULL With @ VBIUEcooiiiiieeee ettt e e e e st e e e e e e e aenns 29
Converting VAIUES 10 NULLcuuiiiiiiiie ettt e e e ettt e e e e s et e e e e e e e s st r e e e e e e e s sannrrnneeeeens 30
Altering popUlated tADIESeiiiiiiiee e e e e aaa e e 31
Adding a non-nullable field to a populated tableovviiiiie i 31
Making existing columns NON-NUIEDIEoeiiiiiiii e 34
Making non-nullable columns NUITAbIE agaiNovvieeiiee e 35
Testing for NULL and equality in PraCliCeoceviieiiiie ettt e e e e e e 35

Firebird Null Guide

Testing for NULL — if It MEEISuiiiiiiiec e e e e e e e e e e e e e s eaanneees 36

o 0 L Y === SO PSRRRR 36
Finding out if afield has Changedoooiiiiiiii e 38

RS 01010 USSP 39
Appendix A: NULL-related bugs in FIr€hirdooooiiiiiiiiiiiiiee e e e e e 41
BUQGS that Crash the SEIVEN ... e e e e e raees 41
EXECUTE STATEMENT With NULL argUmentc.ooveeiieiiiiiiiiieeeee et 41

EXTRACT frOM NULL QaEE ...eeeiiiiiieeiiiiie ettt ettt e e e e 41

FIRST and SKIP With NULL @rQUMENTccceeeiiiiiiiiiiece e e e e ettt e e e e e s st rer e e e e e e e e nnnnran e e e e e e e e ns 41

LIKE WIth NULL SCAPE ...eeiiieeiiiiiiiieiee e e e e e e ettt e e e e s e ettt e e e e e e e e e s s saanaa e e s eaeeessanntbaseeeaeeseannnnees 41

(@197 S o U To = RPN 41
NULLS iN NOT NULL COIUMNS ...uitiiieeiiiiiee sttt ee e siiee e st ee s st e s snssee e e snnsaeeesanneeaesnnnneeeenas 41

Illegal NULLS returned @S 0, ' ', BC. ..oiiiiiiiieiiei ettt e e e e e e e e eananees 42

Primary Key With NULL ENEITEScceiiiiiiiicciiieeeee ettt e et a e e e e annees 42
SUBSTRING results described as Non-nullableoooiiiiiiiiiii e 42

Ghak -N restOriNg NOT NULL ...cccuiviiiiieee e ettt ee e e e e s ssttrae e e e e e e s e s satass e e s e e e e e s sennsrnereeeaeeaaanns 42

IN, =ANY and =SOME With indeXed SUDSEIECEcoevveieeieee et e e e e e 42

ALL With indexed SUDSEIECEccoiiiiiiieiiiiiie et s e e e as 42

SELECT DISTINCT with wrong NULLS FIRST|LAST Orderingcccveeveeeeeiiiiiiiieeee e e e, 43

UDFs returning values when they should return NULLoovvveeiiiiiiiiiiieecce e 43

UDFs returning NULL when they should return avalueccccvvieeieeeeiiicciiiieeec e, 43
SINGULAR inconsistent With NULL FESUITSceeiiiiiieriiiiiiee it 43

AppendiX B: DOCUMENE NISIOMYeeiiiiiiiiciiiiei et e e e e e e e e e e e e e e et re e e e e e e e s e anneeees 44
APPENIX C: LICENSE NMOLICE ...vviiiiiieeei it e e e e e e e e e e e e s s st a e e e e e e e e s s ssabareeeeaeeeseannssrenees 45
F N Fo gt o= Lo T oo (= PR 46

What is NULL?

Time and again, support questions pop up on the Firebird mailing lists about “ strange things’ happening with
NULLs. The concept seems difficult to grasp — perhaps partly because of the name, which suggests a kind of
“nothing” that won't do any harm if you add it to anumber or stick it to the back of astring. Inreality, performing
such operations will render the entire expression NULL.

This guide explores the behaviour of NULL in Firebird SQL, points out common pitfalls and shows you how to
deal safely with expressions that contain NULL or may resolve to NULL.

If you only need a quick reference to refresh your memory, go to the summary at the end of the guide.

So —what is it?

In SQL, NULL isnot avalue. It isastateindicating that an item's value is unknown or nonexistent. It isnot zero
or blank or an “empty string” and it does not behave like any of these values. Few thingsin SQL lead to more
confusion than NULL, and yet its workings shouldn't be hard to understand as long as you stick to the following
simple definition: NULL means unknown.

Let me repeat that:
NULL means UNKNOWN

Keep thislinein mind as you read through the rest of the guide, and most of the seemingly illogical resultsyou
can get with NULL will practically explain themselves.

Note

A few sentences and examples in this guide were taken from the Firebird Quick Start Guide, first published
by 1BPhoenix, now part of the Firebird Project.

NULL support in Firebird SQL

Only afew language elements are purposely designed to give an unambiguous result with NULL (unambiguous
in the sense that some specific action is taken and/or a non-NULL result is returned). They are discussed in the
following paragraphs.

Disallowing NULL

In a column or domain definition, you can specify that only non-NULL values may be entered by adding NOT
NULL to the definition:

create table MyTable (i int not null)

create domai n DTown as varchar(32) not null

Firebird Null Guide

Special care should be taken when adding a NOT NULL field to an existing table that already contains records.
This operation will be discussed in detail in the section Altering populated tables.

Testing for NULL

If you want to know whether a variable, field or other expression is NULL, use the following syntax:
<expressi on>IS[NOT] NULL

Examples:
if (MField is null) then YourString = 'Dunno'
select * from Pupils where PhoneNunber is not null

select * from Pupils where not (PhoneNunber is null)
/* does the sanme as the previous exanple */

updat e Nunbers set Total = A+ B + Cwhere A+ B + Cis not null

del ete from Phonebook where PhoneNumis null
Donot use“... = NULL” totest for nullness. Thissyntax isillegal in Firebird versions up to 1.5.n, and givesthe
wrong result in Firebird 2 and up: it returns NULL no matter what you compare. Thisis by design, incidentaly,

and inthat senseit's not really wrong — it just doesn't give you what you want. The same goesfor “... <> NULL",
s0 don't use that either; use ISNOT NULL instead.

ISNULL and ISNOT NULL awaysreturntr ue or f al se; they never return NULL.

Assigning NULL

Setting afield or variableto NULL isdone withthe =" operator, just like assigning values. Y ou can aso include
NULL inaninsert list:

if (YourString = 'Dunno’) then MyField = null

updat e Pot at oes set Anpunt = null where Amount < O

insert into MyTable values (3, '8-May-2004', NULL, 'Wat?')
Remember:

* You cannot — and should not — use the comparison operator “=" to test if something is NULL...
 ...but you can — and often must — use the assignment operator “=" to set something to NULL.

Testing DISTINCTness (Firebird 2+)

In Firebird 2 and higher only, you can test for the null-encompassing equality of two expressionswith “1S[NOT]
DISTINCT FROM”:

Firebird Null Guide

if (Ais distinct fromB) then...
if (Buyerl is not distinct fromBuyer2) then...

Fields, variables and other expressions are considered:

» DISTINCT if they have different values or if one of them is NULL and the other isn't;
* NOT DISTINCT if they have the same value or if both of them are NULL.

[NOT] DISTINCT awaysreturnst r ue or f al se, never NULL or something else.

With earlier Firebird versions, you have to write special code to obtain the same information. This will be
discussed later.

The NULL literal

The ability to use NULL literals depends on your Firebird version.

Firebird 1.5 and below

InFirebird 1.5 and below you can only usetheliteral word “NULL” in afew situations, namely the ones described
in the previous paragraphs plus a few others such as “cast(NULL as <dat at ype>)" and “select NULL from
MyTable’.

In all other circumstances, Firebird will complain that NULL is an unknown token. If you really must use NULL
in such a context, you have to resort to tricks like “cast(NULL asint)", or using a field or variable that you
know is NULL, etc.

Firebird 2.0 and up

Firebird 2 alows the use of NULL literalsin every context where a normal value can also be entered. You can
e.g. include NULL in an IN() list, write expressions like “if (MyField = NULL) then...”, and so on. However,
as agenera rule you should not make use of these new possibilities! In amost every thinkable situation, such
use of NULL literalsisasign of poor SQL design and will lead to NULL results where you meant to get t r ue
or f al se. Inthat sense the earlier, more restrictive policy was safer, although you could always bypassit with
casts etc. — but at least you had to take deliberate steps to bypassit.

NULL in operations

As many of us have found out to our chagrin, NULL is contagious. use it in a numerical, string or date/time
operation, and the result will invariably be NULL. With boolean operators, the outcome depends on the type of
operation and the value of the other operand.

Please remember that in Firebird versions prior to 2.0 it is mostly illegal to use the constant NULL directly in
operations or comparisons. Wherever you see NULL in the expressions below, read it as “a field, variable or
other expression that resolvesto NULL". In Firebird 2 and above this expression may also be a NULL literal.

Firebird Null Guide

Mathematical and string operations

The operationsin thislist always return NULL:

1+ 2+ 3+ NULL

5* NULL - 7

"Hormre ' || 'sweet ' || NULL
MyField = NULL

MyFi el d <> NULL

NULL = NULL

If you have difficulty understanding why, remember that NULL means “unknown”. Y ou can also look at the
following table where per-case explanations are provided. In the table we don't write NULL in the expressions
(assaid, thisis often illegal); instead, we use two entities A and B that are both NULL. A and B may be fields,
variables, or even composite subexpressions — as long as they're NULL, they'll all behave the same in the en-

closing expressions.

Table 1. Operations on null entitiesA and B

If Aand BareNULL, then: Is: Because:

1+2+3+A NULL If A isunknown, then 6 + A is also unknown.

5* A-7 NULL If A isunknown, then5* A is also unknown. Subtract 7
and you end up with another unknown.

"Horme ' || 'sweet ' || A NULL If A isunknown, 'Home sweet ' || A is unknown.

MField = A NULL If A isunknown, you can't tell if MyField has the same
value...

MField <> A NULL ...but you also can't tell if MyField has a different value!

A=1B NULL | With A and B unknown, it'simpossible to know if they
are equal.

Here isthe complete list of math and string operators that return NULL if at least one operand is NULL:

o +, -, * [/, and %

e I=, ~= and ~= (synonymsof <>)

e <, <=, > and >=

e 1<, ~<, and "< (low-precedence synonymsof >=)
e I> ~> and ~> (low-precedence synonymsof <=)
* |

« [NOT] BETWEEN

e [NOT] STARTING WITH

e [NOT] LIKE

* [NOT] CONTAINING

The explanations all follow the same pattern: if A is unknown, you can't tell if it's greater than B; if string S1

isunknown, you can't tell if it contains S2; etcetera.

Firebird Null Guide

Using LIKE with aNULL escape character would crash the server in Firebird versions up to and including 1.5.
This bug was fixed inv. 1.5.1. From that version onward, such a statement will yield an empty result set.

Boolean operations

All the operators examined so far return NULL if any operand is NULL. With boolean operators, things are a
bit more complex:

e not NULL = NULL

e NULL or false = NULL

e NULL or true = true

e NULL or NULL = NULL

e NULL and false = fal se
e NULL and true = NULL

e NULL and NULL = NULL

In reality, Firebird SQL doesn't have a boolean data type; nor aret r ue and f al se existing constants. In the
leftmost column of the explanatory table below, “t r ue” and “f al se” represent expressions (fields, variables,
composites...) that evaluateto t r ue/f al se.

Table 2. Boolean operations on null entity A

IfAis Is. Because:
NULL, then:
not A NULL If A isunknown, itsinverseis also unknown.
A or false NULL | “A or fal se” awayshasthe samevalue as A —which is unknown.
A or true true “A or true” isadwaystrue —A'svaue doesn't matter.
Aor A NULL | “A or A’ awaysequalsA —whichisNULL.

A and false |false |“A and fal se” isawaysf al se —A'svalue doesn't matter.

A and true NULL | “A and true” always hasthe same value as A —which is unknown.

A and A NULL | “A and A” awaysequals A —whichisNULL.

All theseresults arein accordance with boolean logic. The fact that you don't need to know X'svalue to compute
“Xortrue”and“X andf al se” isalso the basis of afeature found in various programming languages: short-
circuit boolean evaluation.

The above results can be generalised as follows for expressions with one type of binary boolean operator (and
| or) and any number of operands:

Digunctions(“AorBor CorDor ...")
1. |Ifatleast oneoperandist r ue, theresultist r ue.
2. Elsg, if at least one operand is NULL, the result is NULL.
3. Else(i.e if dl operandsaref al se) theresultisf al se.

Conjunctions (“*AandBand Cand D and ...")
1. Ifatleastoneoperandisf al se, theresultisf al se.

Firebird Null Guide

2. Elsg, if at least one operand is NULL, the result is NULL.
3. Else(i.e if dl operandsaret r ue) theresultist r ue.

Or, shorter:

TRUE beats NULL in a disunction (OR-operation);
FAL SE beats NULL in a conjunction (AND-operation);
In all other cases, NULL wins.

If you have trouble remembering which constant rules which operation, look at the second letter: tRue prevails
with oR — fAlse with And.

More logic (or not)

The short-circuit results obtained above may lead you to the following ideas:

0 times x equals O for every x. Hence, even if x'svalueis unknown, 0 * x is0. (Note: this only holds if
x's datatype only contains numbers, not NaN or infinities.)

Theempty string is ordered lexicographically before every other string. Therefore, S >= ' ' istruewhatever
thevalue of S.

Every value equals itself, whether it's unknown or not. So, athough A = B justifiably returns NULL if A
and B are different NULL entities, A = A should alwaysreturnt r ue, even if A is NULL. The same goes
forA <= AandA >= A

By analogous logic, A <> Ashould alwaysbef al se,aswell asA < AandA > A

Every string contains itself, starts with itself and islike itself. So, “S CONTAI NI NG S’, “S STARTI NG
WTH S”and“S LI KE S” should alwaysreturnt r ue.

How isthisreflected in Firebird SQL? Well, I'm sorry | have to inform you that despite this compelling logic —
and the analogy with the boolean results discussed above — the following expressions all resolve to NULL:

0 * NULL

NULL >= "' and '' <= NULL

A=A A<= A and A>= A

A<>A A<A ad A>A

S CONTAINNNG S, S STARTINGWTH S and S LIKE S

So much for consistency.

Internal functions and directives

Internal functions

The following built-in functions return NULL if at least one argument is NULL:

Firebird Null Guide

« CAST()

« EXTRACT()

« GEN_ID()
 SUBSTRING()

* UPPER()

« LOWER()

« BIT_LENGTH()

« CHAR[ACTER]_LENGTH()
« OCTET_LENGTH()

« TRIM()

Notes
¢ |n1.0.0, EXTRACT from aNULL date would crash the server. Fixed in 1.0.2.

e |f the first argument to GEN_ID is a valid generator name and the second argument is NULL, the named
generator keepsits current value.

e Inversions up to and including 2.0, SUBSTRING results are sometimes returned as “false emptystrings’.
Thesestringsareinfact NULL, but are described by the server as non-nullable. Therefore, most clients show
them as empty strings. See the bugs list for a detailed description.

FIRST, SKIP and ROWS

The following two directives crash a Firebird 1.5.n or lower server if given a NULL argument. In Firebird 2,
they treat NULL as the value O:

* FIRST
e SKIP

This new Firebird 2 directive returns an empty set if any argument is NULL:
* ROWS

Side note: ROWS complies with the SQL standard. In new code, use ROWS, not FIRST and SKIP.

Predicates

Predicates are statements about objects that return a boolean result: t r ue, f al se or unknown (= NULL). In
computer code you typically find predicates in places where as yes/no type of decision has to be taken. For
Firebird SQL, that means in WHERE, HAVING, CHECK, CASE WHEN, IF and WHILE clauses.

Comparisons such as “x >y” also return boolean results, but they are generally not called predicates, although
thisismainly amatter of form. An expression like Greater(X, y) that does exactly the same would immediately
qualify as a predicate. (Mathematicians like predicates to have a name — such as “Greater” or just plain “G” —
and apair of parentheses to hold the arguments.)

Firebird supports the following SQL predicates: IN, ANY, SOME, ALL, EXISTS and SINGULAR.

10

Firebird Null Guide

Note

Itisalso perfectly defensible to call “IS[NOT] NULL” and “IS[NOT] DISTINCT FROM” predicates, despite the
absence of parentheses. But, predicates or not, they have aready been introduced and won't be discussed in
this section.

The IN predicate

ThelN predicate comparesthe expression onitsleft-hand sideto anumber of expressions passed in the argument
listand returnst r ue if amatchisfound. NOT IN alwaysreturnsthe opposite of IN. Some examplesof itsuse are:

sel ect RoomNo, Floor from d assroons where Floor in (3, 4, 5)

del ete from Custoners where upper(Nane) in ("UNKNOAW , "NN, '")

if (Anot in (MyVar, MyVar + 1, YourVar, HisVar)) then ...
Thelist can also be generated by a one-column subquery:

select ID, Nane, Cdass from Students
where IDin (select distinct LentTo from Li braryBooks)

With an empty list
If the list isempty (thisis only possible with a subguery), IN alwaysreturnsf al se and NOT IN always returns

true, even if the test expression is NULL. This makes sense: even if a value is unknown, it's certain not to
occur inan empty list.

With a NULL test expression

If the list is not empty and the test expression — called “A” in the examples below — is NULL, the following
predicates will always return NULL, regardless of the expressionsin the list:

* A IN (Exprl, Expr2, ..., EXprN)
A NOTIN (Exprl, Expr2, ..., EXprN)

The first result can be understood by writing out the entire expression as a disjunction (OR-chain) of equality
tests:

A=Exprl or A=Expr2 or ... or A=ExprN
which, if A isNULL, boils down to

NULL or NULL or ... or NULL
whichisNULL.

The nullness of the second predicate follows from the fact that “not (NULL)" equals NULL.

11

Firebird Null Guide

With NULLS in the list

If A has a proper value but the list contains one or more NULL expressions, things become a little more com-
plicated:

» |If at least one of the expressionsin the list has the same value as A:

“A IN(Exprl, Expr2, ..., ExprN)” returnst r ue
- “A NOT IN(Exprl, Expr2, ..., ExprN)” returnsf al se

Thisisduetothefact that “t r ue or NULL” returnst r ue (see above). Or, more general: adigunction where
at least one of the elementsist r ue, returnst r ue even if some other elementsare NULL. (Any f al ses, if
present, are not in theway. In adisunction, t r ue rules.)

 If none of the expressions in the list have the same value as A:

- “AIN(Exprl, Exprz, ..., ExprN)” returns NULL
“A NOT IN(Exprl, Expr2, ..., EXprN)” returns NULL

Thisis because “f al se or NULL” returns NULL. In generalised form: a disunction that has only f al se
and NULL elements, returns NULL.

Needless to say, if neither A nor any list expression is NULL, the result is always as expected and can only be
trueorfal se.

IN() results
Thetable below shows all the possible resultsfor IN and NOT IN. To useit properly, start with thefirst question

in the left column. If the answer is No, move on to the next line. As soon as an answer is Y es, read the results
from the second and third columns and you're done.

Table 3. Resultsfor “A [NOT] IN (<list>)”

Conditions Results
INQ) NOT IN()
Isthelist empty? fal se true
Else, isA NULL? NULL NULL
Else, isat least onelist element equal to A? true fal se
Else, isat least onelist element NULL? NULL NULL
Else (i.e. al list elements are non-NULL and unequal to A) fal se true

In many contexts (e.g. within IF and WHERE clauses), a NULL result behalveslikef al se in that the condition
is not satisfied when the test expression is NULL. On the one hand this is convenient for cases where you might
expect f al se but NULL is returned: you simply won't notice the difference. On the other hand, this may also

12

Firebird Null Guide

lead you to expect t r ue when the expression isinverted (using NOT) and thisis where you'll run into trouble.
In that sense, the most “dangerous’ case in the above table is when you use an expression of the type “A NOT
IN (<list>)", with A indeed not present in the list (so you'd expect aclear t r ue result) but the list happens to
contain one or more NULLS.

Caution
Be especially careful if you use NOT IN with a subselect instead of an explicit list, e.g.
A not in (select Nunber from MyTabl e)

If A is not present in the Number column, the result ist r ue if no Number is NULL, but NULL if the column
does contain a NULL entry. Please be aware that even in a situation where A is constant and its value is never
contained in the Number column, the result of the expression (and therefore your program flow) may still vary
over time according to the absence or presence of NULLSs in the column. Hours of debugging fun! Of course
you can avoid this particular problem simply by adding “where Number is not NULL” to the subsel ect.

Bug alert

All Firebird versions before 2.0 contain a bug that causes [NOT] IN to return the wrong result if an index is
active on the subselect and one of the following conditionsis true:

e A isNULL and the subselect doesn't return any NULLS, or
e Aisnot NULL and the subselect result set doesn't contain A but does contain NULL(S).

Please realise that an index may be active even if it has not been created explicitly, namely if akey is defined
onA.

Example: Table TA hasacolumn A withvalues{ 3, 8}. Table TB has a column B containing { 2, 8, 1, NULL
}. The expressions:

A [not] in (select B fromTB)

should both return NULL for A = 3, because of the NULL in B. But if B isindexed, IN returnsf al se and NOT
IN returnst r ue. As aresult, the query

select A from TA where A not in (select B fromTB)

returns a dataset with one record — containing the field with value 3 — while it should have returned an empty
set. Other errors may also occur, e.g. if you use “NOT IN” in an IF, CASE or WHILE statement.

As an aternative to NOT IN, you can use “<> ALL". The ALL predicate will be introduced shortly.

IN() in CHECK constraints

The IN() predicate is often used in CHECK constraints. In that context, NULL expressions have a surprisingly
different effect in Firebird versions 2.0 and up. Thiswill be discussed in the section CHECK constraints.

The ANY, SOME and ALL quantifiers

Firebird has two quantifiersthat allow you to compare a value to the results of a subselect:

e ALL returnst r ue if the comparison is true for every element in the subselect.

13

Firebird Null Guide

e ANY and SOME (full synonyms) returnt r ue if thecomparisonistruefor at least one element in the subsel ect.

With ANY, SOME and ALL you provide the comparison operator yourself. This makes it more flexible than IN,
which only supportsthe (implicit) “=" operator. On the ather hand, ANY, SOME and ALL only accept a subselect
as an argument; you can't provide an explicit list, aswith IN.

Vdid operatorsare =, ! =, <, >, =<, => and al their synonyms. You can't use LIKE, CONTAINING, IS
DISTINCT FROM, or any other operators.

Some usage exampl es:

sel ect nane, incone from bl acksniths
where income > any(select incone fromgoldsniths)

(returns blacksmiths who earn more than at least one goldsmith)

sel ect nane, town from bl acksniths
where town !'= all(select distinct town fromgoldsmths)

(returns blacksmiths who live in a goldsmithless town)

if (GSlncone !> sone(select income fromblacksnmiths))
t hen Poor Gol dsmith 1;
el se Poor Gol dsmith 0;

(sets PoorGoldsmith to 1 if at least one blacksmith'sincome is not less than the value of GSIncome)

Result values

If the subselect returns an empty set, ALL returnst r ue and ANY|SOME returnf al se, evenif theleft-hand side
expression is NULL. This follows from the definitions and the rules of formal logic. (Math-heads will already
have noticed that ALL is equivaent to the universal (“A”) quantifier and ANY|SOME to the existential (“E”")
quantifier.)

For non-empty sets, you can write out “A <op> ANY|SOME (<subsel ect >)" as

A<op>El or A<op>E2 or .. or A<op>En
with <op> the operator used and E1, E2 etc. the items returned by the subquery.
Likewise, “A <op> ALL (<subsel ect >)" isthe same as

A<op>El and A<op>E2 and .. and A <op>En
This should look familiar. The first writeout is equal to that of the IN predicate, except that the operator may
now be something other than “=". The second is different but has the same general form. We can now work out
how nullness of A and/or nullness of subselect results affect the outcome of ANY|SOME and ALL. Thisis done
in the same way as earlier with IN, so instead of including all the steps here we will just present the result tables.

Again, read the questions in the left column from top to bottom. As soon as you answer a question with “Yes’,
read the result from the second column and you're done.

14

Firebird Null Guide

Table 4. Resultsfor “A <op> ANY|SOME (<subselect>)”

Conditions Result

ANY | SOME
Does the subselect return an empty set? fal se
Else, isA NULL? NUL L
Else, does at |east one comparison returnt r ue? true
Else, does at |east one comparison return NULL? NULL
Else (i.e. al comparisonsreturn f al se) fal se

If you think these results ook alot like what we saw with IN(), you're right: with the “=" operator, ANY isthe
same asIN. Inthe sameway, “<> ALL" isequivalent to NOT IN.

Bug alert (revisited)

In versions before 2.0, “= ANY” suffers from the same bug as IN. Under the “right” circumstances, this can
lead to wrong results with expressions of the type “NOT A = ANY(...)".

On the bright side, “<> ALL” is not affected and will always return the right result.

Table5. Resultsfor “A <op> ALL (<subselect>)"

Conditions Result

ALL

Does the subselect return an empty set? true
Else, isA NULL? NULL
Else, does at |east one comparison return f al se? fal se
Else, does at |east one comparison return NULL? NULL
Else (i.e. al comparisonsreturnt r ue) true

ALL bug

Although “<> ALL"” aways works as it should, ALL should nevertheless be considered broken in all pre-2.0
versions of Firebird: with every operator other than “<>", wrong results may be returned if an index is active
on the subsel ect — with or without NULLSs around.

15

Firebird Null Guide

Note

Strictly speaking, the second question in both tables (“is A NULL?") is redundant and can be dropped. If A
isNULL, all the comparisons return NULL, so that situation will be caught alittle later. And while we're at it,
we could drop the first question too: the “empty set” situation is just a special case of the final “else’. The
whole thing then once again boilsdown to “t r ue beats NULL beatsf al se” in disunctions (ANY|SOME) and
“f al se beats NULL beatst r ue” in conjunctions (ALL).

The reason we included those questions is convenience: you can seeif a set is empty at a glance, and it's also
easier to check if the left-hand side expression is NULL than to evaluate each and every comparison result. But
do feel free to skip them, or to skip just the second. Do not, however, skip the first question and start with the
second: thiswill lead to awrong conclusion if the set is empty!

EXISTS and SINGULAR

The EXISTS and SINGULAR predicates return information about a subquery, usually a correlated subquery. You
can use them in WHERE, HAVING, CHECK, CASE, IF and WHILE clauses (the latter two are only available in
PSQL, Firebird's stored procedure and trigger language).

EXISTS

EXISTS tells you whether a subquery returns at least one row of data. Suppose you want a list of farmers who
are also landowners. Y ou could get one like this:

SELECT Farner FROM Farnms WHERE EXI STS
(SELECT * FROM Landowners
VWHERE Landowners. Nanme = Farms. Far ner)

This query returns the names of all farmers who also figure in the Landowners table. The EXISTS predicate
returnst r ue if the result set of the subselect contains at least one row. If it is empty, EXISTSreturnsf al se.
EXISTS never returns NULL, because a result set always either has rows, or hasn't. Of course the subselect's
search condition may evolve to NULL for certain rows, but that doesn't cause any uncertainty: such arow won't
be included in the subresult set.

Note

Inreality, the subselect doesn't return aresult set at all. The engine simply stepsthrough the Landownersrecords
one by one and applies the search condition. If it evolvestot r ue, EXISTSreturnst r ue immediately and the
remaining records aren't checked. If it evolvesto f al se or NULL, the search continues. If all the records have
been searched and there hasn't been asinglet r ue result, EXISTSreturnsf al se.

NOT EXISTS awaysreturnsthe opposite of EXISTS: f al se ort r ue, never NULL. NOT EXISTSreturnsf al se
immediately if it getsat r ue result on the subquery's search condition. Before returning t r ue it must step
through the entire set.

SINGULAR

SINGULAR is an InterBase/Firebird extension to the SQL standard. It is often described as returning t r ue if
exactly one row in the subquery meets the search condition. By analogy with EXISTS this would make you

16

Firebird Null Guide

expect that SINGULAR toowill only ever returnt r ue or f al se. After all, aresult set haseither exactly 1 row or
adifferent number of rows. Unfortunately, all versions of Firebird up to and including 2.0 have abug that causes
NULL resultsin anumber of cases. The behaviour is pretty inconsistent, but at the same time fully reproducible.
For instance, on a column A containing (1, NULL, 1), aSINGULAR test with subselect “A=1" returns NULL, but
the sametest on acolumnwith (1, 1, NULL) returnsf al se. Noticethat only theinsertion order is different here!

To make matters worse, all versions prior to 2.0 sometimes return NULL for NOT SINGULAR where f al se
or t rue isreturned for SINGULAR. In 2.0, this at least doesn't happen anymore: it's either f al se vs. true
or twice NULL.

The code has been fixed for Firebird 2.1; from that version onward SINGULAR will return:
» fal se if the search condition is never t r ue (thisincludes the empty-set case);

» true if thesearch conditionist r ue for exactly 1 row;

o fal se if the search conditionist r ue for more than 1 row.

Whether the other rowsyield f al se, NULL or a combination thereof, isirrelevant.

NOT SINGULAR will always return the opposite of SINGULAR (asis already the casein 2.0).

In the meantime, if there's any chance that the search condition may evolve to NULL for one or more rows, you
should always add an ISNOT NULL condition to your [NOT] SINGULAR clauses, e.g. likethis:

SI NGULAR(SELECT * from MyTabl e
VWHERE MyField > 38
AND MyField I'S NOT NULL)

Searches

If the search condition of a SELECT, UPDATE or DELETE statement resolves to NULL for a certain row, the
effect isthe same asiif it had been f al se. Put another way: if the search expression is NULL, the condition is
not met, and consequently the row is not included in the output set (or is not updated/del eted).

Note

The search condition or search expression is the WHERE clause minus the WHERE keyword itself.

Some examples (with the search condition in boldface):
SELECT Farnmer, Cows FROM Farnms WHERE Cows > 0 ORDER BY Cows

The above statement will return the rows for farmers that are known to possess at least one cow. Farmers with
an unknown (NULL) number of cows will not be included, because the expression “NULL > 0” returns NULL.

SELECT Farner, Cows FROM Farnms WHERE NOT (Cows > 0) ORDER BY Cows
Now, it'stempting to think that thiswill return “all the other records’ from the Farmstable, right? But it won't —

not if the Cows column contains any NULLs. Remember that not (NULL) isitself NULL. So for any row where
CowsisNULL, “Cows > 0” will be NULL, and “NOT (Cows > 0)” will be NULL aswell.

17

Firebird Null Guide

SELECT Farner, Cows, Sheep FROM Farnms WHERE Cows + Sheep > 0

On the surface, thislooks like a query returning all the farms that have at least one cow and/or sheep (assuming
that neither Cows nor Sheep can be a negative number). However, if farmer Fred has 30 cows and an unknown
number of sheep, the sum Cows + Sheep becomes NULL, and the entire search expression boils down to
“NULL > 07, whichis... you got it. So despite his 30 cows, our friend Fred won't make it into the result set.

Asalast example, we shall rewrite the previous statement so that it will return any farm which has at least one
animal of aknown kind, even if the other number isNULL. To do that, we exploit thefact that “NULL or true”
returnst r ue —one of the rare occasions where a NULL operand doesn't render the entire expression NULL:

SELECT Farner, Cows, Sheep FROM Farnms WHERE Cows > 0 OR Sheep > 0O

Thistime, Fred'sthirty cowswill make thefirst comparisont r ue, while the sheep bit is still NULL. So we have
“t rue or NULL”",whichistrue, and the row will beincluded in the output set.

Caution

If your search condition containsone or moreIN predicates, thereisthe additional complication that some of the
list elements (or subselect results) may be NULL. The implications of this are discussed in The IN() predicate.

Sorts

In Firebird 2, NULLs are considered “smaller” than anything else when it comes to sorting. Consequently, they
come first in ascending sorts and last in descending sorts. Y ou can override this default placement by adding a
NULLSFIRST or NULLS LAST directive to the ORDER BY clause.

In earlier versions, NULLswere always placed at the end of a sorted set, no matter whether the order was ascend-
ing or descending. For Firebird 1.0, that was the end of the story: NULLs would always come last in any sorted
set, period. Firebird 1.5 introduced the NULLS FIRST/LAST syntax, so you could force them to the top or bottom.

Tosumit al up:

Table 6. NULL placement in ordered sets

Ordering NULLs placement
Firebird 1 Firebird 1.5 Firebird 2
order by Field [asc] bottom bottom top
order by Field desc bottom bottom bottom
order by Field [asc | desc] nulls first — top top
order by Field [asc | desc] nulls last — bottom bottom

Specifying NULLS FIRST on an ascending or NULLS LAST on adescending sort in Firebird 2 is of course rather

pointless, but perfectly legal. The sameistrue for NULLS LAST on any sort in Firebird 1.5.

18

Firebird Null Guide

Notes

If you overridethe default NUL Ls placement, no index will be used for sorting. In Firebird 1.5, that isthe case
with NULLS FIRST. In 2.0 and higher, with NULLS LAST on ascending and NULLS FIRST on descending

If you open a pre-2.0 database with Firebird 2, it will show the old NULL ordering behaviour (that is: at the
bottom, unless overridden by NULLSFIRST). A backup-restore cycle will fix this, provided that at least the
restore is executed with Firebird 2's gbak!

Firebird 2.0 has abug that causes the NULLS FIRST|LAST directive to fail under certain circumstances with
SELECT DISTINCT. See the bugs list for more details.

Warning

Don't betempted into thinking that, because NUL L isthe“smallest thing” in sorts since Firebird 2, an expression
like “NULL < 3” will now aso returnt r ue. It won't. Using NULL in this kind of expression will always give
aNULL outcome.

The aggregate functions — COUNT, SUM AVG, MAX, M N and LI ST — don't handle NULL in the same way as
ordinary functions and operators. Instead of returning NULL as soon as a NULL operand is encountered, they
only take non-NULL fields into consideration while computing the outcome. That is, if you have this table:

Aggregate functions

MyTable
ID Name Amount
1 John 37
2 Jack NULL
3 Jm 5
4 Joe 12
5 Josh NULL

..the statement sel ect sun{Anmount) from MyTabl e returns 54, which is 37 + 5 + 12. Had dl five
fields been summed, the result would have been NULL. For AVG, the non-NULL fields are summed and the sum

divided by the number of non-NULL fields.

There is one exception to this rule: COUNT(*) returns the count of all rows, even rows whose fields are all
NULL. But COUNT(Fi el dName) behaves like the other aggregate functions in that it only counts rows where

the specified field is not NULL.

Another thing worth knowing isthat COUNT(*) and COUNT(Fi el dNane) never return NULL: if there are no
rows in the set, both functions return 0. COUNT(Fi el dName) also returns O if all Fi el dNane fields in the
set are NULL. The other aggregate functions return NULL in such cases. Be warned that SUMeven returns NULL
if used on an empty set, which is contrary to common logic (if there are no rows, the average, maximum and

minimum are undefined, but the sum is known to be zero).

19

Firebird Null Guide

Now let's put al that knowledge in atable for your easy reference:

Table 7. Aggregate function results with different column states

Function Results
Empty set All-null set or | Other setsor columns
column
COUNT(*) 0 Total number of | Total number of rows
rows
COUNT(Field) |0 0 Number of rows where Field is not NULL
MAX, MIN NULL NULL Max or min value found in the column
SUM NUL L NULL Sum of non-NULL vauesin the column
AVG NULL NULL Average of non-NULL values in the column. This
equals SUM(Field) / COUNT(Field).2
LIST NULL NULL Comma-separated string concatenation of non-NULL
valuesin the column

4f Fidld is of an integer type, AVG is aways rounded towards 0. For instance, 6 non-null INT records with a sum of -11 yield an average
of -1, not -2.
PLIST was added in Firebird 2.1

The GROUP BY clause

A GROUPBY clause doesn't change the aggregate function logic described above, except that it is now applied
to each group individualy rather than to the result set as a whole. Suppose you have a table Employee, with
fields Dept and Salary which both allow NULLSs, and you run this query:

SELECT Dept, SUM Sal ary) FROM Enpl oyee GROUP BY Dept

The result may look like this (the row where Dept is <nul | > may be at the top or bottom, depending on your
Firebird version):

DEPT SUM
<nul | > 219465. 19
000 266643. 00
100 155262. 50
110 130442. 81
115 13480000. 00
120 <nul | >
121 110000. 00
123 390500. 00

First notice that the people whose department is unknown (NULL) are grouped together, although you can't say
that they have the same valuein the Dept field. But the alternative would have been to give each of those records
a“group” of their own. Not only would this possibly add a huge number of lines to the output, but it would also
defeat the purpose of grouping: those lineswouldn't be aggregates, but simple“ SELECT Dept, Salary” rows. So
it makes sense to group the NULL depts by their state and the rest by their value.

20

Firebird Null Guide

Anyway, the Dept field is not what interests us most. What does the aggregate SUM column tell us? That all
salaries are non-NULL, except in department 1207 No. All we can say is that in every department except 120,
thereisat least one employee with aknown salary in the database. Each department may contain NULL salaries;
in dept. 120 all the salaries are NULL.

Y ou can find out more by throwing in one or more COUNT() columns. For instance, if you want to know the
number of NULL salariesin each group, add a column “COUNT(*) — COUNT(Salary)”.

Counting frequencies

A GROUP BY clause can be used to report the frequencies with which values occur in atable. In that case you
use the same field name several times in the query statement. Let's say you have atable TT with a column A
whose contentsare{ 3, 8, NULL, 6, 8, -1, NULL, 3, 1}. To get afrequencies report, you could use:

SELECT A, COUNT(A) FROM TT GROUP BY A

which would give you this result:

Oops — something went wrong with the NULL count, but what? Remember that COUNT(Fi el dNarre) skipsall
NULL fields, so with COUNT(A) the count of the <nul | > group can only ever be 0. Reformulate your query
like this:

SELECT A, COUNT(*) FROM TT GROUP BY A

and the correct value will be returned (in casu 2).

The HAVING clause

HAVING clauses can place extrarestrictions on the output rows of an aggregate query —just like WHERE clauses
do in record-by-record queries. A HAVING clause can impose conditions on any output column or combination
of columns, aggregate or not.

Asfar asNULL is concerned, the following two facts are worth knowing (and hardly surprising, | would guess):

» Rows for which the HAVING condition evaluates to NULL won't be included in the result set. (“Only t r ue
isgood enough.”)

* “HAVING <col > IS[NOT] NULL" isalegal and often useful condition, whether <col > is aggregate or not.
(But if <col > isnon-aggregate, you may save the engine some work by changing HAVING to WHERE and
placing the condition beforethe“ GROUPBY” clause. Thisgoesfor any condition on non-aggregate columns.)

For instance, adding the following clause to the example query from the “GROUP BY” paragraph:

21

Firebird Null Guide

... HAVING Dept 1S NOT NULL
will prevent the first row from being output, whereas this one:
... HAVI NG SUM Sal ary) |'S NOT NULL

suppresses the sixth row (the one with Dept = 120).

Conditional statements and loops

IF statements

If the test expression of an IF statement resolves to NULL, the THEN clause is skipped and the ELSE clause —
if present — executed. In other words, NULL and f al se have the same effect in this context. So in situations
where you would logically expect f al se but NULL is returned, no harm will be done. However, we've aready
seen examples of NULL being returned where you would expect t r ue, and that does affect the flow of the code!

Below are some examples of the seemingly paradoxical (but perfectly correct) results you can get if NULLS
creep into your IF statements.

Tip

If you use Firebird 2 or higher, you can avoid all the pitfalls discussed here, smply by using [NOT] DISTINCT
instead of the“=" and “<>" operators!

* if (a =Db) then
MyVari abl e = ' Equal ' ;
el se
MyVari able = ' Not equal';

If a and b are both NULL, MyVar i abl e will yet be “Not equal " after executing this code. The reason
isthat the expression “a = b” yields NULL if at least one of them is NULL. With a NULL test expression,
the THEN block is skipped and the ELSE block executed.

* if (a <>0Db) then
MyVari able = ' Not equal';
el se
MyVari abl e = ' Equal ' ;

Here, MyVari abl e will be“Equal " if a isNULL and b isn't, or vice versa. The explanation is analogous
to that of the previous example.

So how should you set up equality tests that do give the logical result under all circumstances, even with NULL
operands? In Firebird 2 you can use DISTINCT, as already shown (see Testing DISTINCTness). With earlier
versions, you'll have to write some more code. This is discussed in the section Equality tests, later on in this
guide. For now, just remember that you have to be very careful with IF conditions that may resolve to NULL.

Another aspect you shouldn't forget is the following: a NULL test expression may behave likef al se inan IF
condition, but it doesn't havethevaluef al se. It'sstill NULL, and that meansthat its inverse will also be NULL

22

Firebird Null Guide

—not “t r ue”. As a consequence, inverting the test expression and swapping the THEN and ELSE blocks may
change the behaviour of the IF statement. In binary logic, where only t r ue and f al se can occur, such athing
could never happen.

Toillustrate this, let's refactor the last example:

* if (not (a <> b)) then
MyVari abl e = ' Equal ' ;
el se
MyVari able = ' Not equal';

Intheorigina version, if one operand was NULL and the other wasn't (so they were intuitively unequal), the
result was“Equal ". Here, it's“Not equal ”. Theexplanation: one operandisNULL, therefore“a <> b” is
NULL, therefore“not (a <> b) " isNULL, therefore ELSE isexecuted. Whilethisresult is correct wherethe
original had it wrong, there's no reason to rejoice: in the refactored version, theresult isalso “Not equal ”
if both operands are NULL — something that the original version “got right”.

Of course, as long as no operand in the test expression can ever be NULL, you can happily formulate your
IF statements like above. Also, refactoring by inverting the test expression and swapping the THEN and ELSE
blocks will always preserve the functionality, regardless of the complexity of the expressions — as long as they
aren't NULL. What's especially treacherous is when the operands are almost always non-NULL, so in the vast
majority of cases the results will be correct. In such a situation those rare NULL cases may go unnoticed for a
long time, silently corrupting your data.

CASE statements

Firebird introduced the CASE construct in version 1.5, with two syntactic variants. The first oneis called the
simple syntax:

case <expression>
when <expl> then <resultl>
when <exp2> then <result2>

[el se <defaul tresult>]
end

This one works more or less like a Pascal case or a C swi t ch construct; <expr essi on> is compared to
<expl>, <exp2> etc., until amatch isfound, in which case the corresponding result is returned. If thereis no
match and there is an ELSE clause, <def aul t r esul t > isreturned. If thereis no match and no ELSE clause,
NULL is returned.

It isimportant to know that the comparisons are done with the “=" operator, so anull <expr essi on> will not
matchanull <expN>. If <expr essi on>isNULL, theonly way to get anon-NULL result isviathe EL SE clause.

Itis OK to specify NULL (or any other valid NULL expression) as aresult.
The second, or searched syntax is.
case
when <conditionl> then <resulti1>

when <condition2> then <result2>

[el se <defaul tresult>]
end

23

Firebird Null Guide

Here, the <condi t i onN>s are tests that give a ternary boolean result: t r ue, f al se, or NULL. Once again,
only t r ue isgood enough, so acondition like“A = 3" —or even “A = null” —is not satisfied when A isNULL.
Remember though that “IS[NOT] NULL" never returns NULL: if A is NULL, the condition “A is null” returns
t r ue and the corresponding <r esul t N> will be returned. In Firebird 2+ you can also use “IS[NOT] DISTINCT
FROM" in your conditions — this operator too will never return NULL.

WHILE loops

When eval uating the condition of aWHILE loop, NULL hasthe same effect asin an IF statement: if the condition
resolvesto NULL, the loop is not (re)entered — just asiif it were f al se. Again, watch out with inversion using
NOT: acondition like

while (Counter > 12) do
will skip the loop block if Counter is NULL, which is probably what you want. But

while (not Counter > 12) do

will also skip if Counter isNULL. Maybethisis also exactly what you want — just be aware that these seemingly
complementary tests both exclude NULL counters.

FOR loops

To avoid any possible confusion, let us emphasise here that FOR loopsin Firebird PSQL have atotally different
function than WHILE loops, or f or loopsin general programming languages. Firebird FOR loops have the form:

for <select-statenent> into <var-list> do <code-bl ock>
and they will keep executing the code block until all the rows from the result set have been retrieved, unless an

exception occurs or a BREAK, LEAVE or EXIT statement is encountered. Fetching a NULL, or even row after
row filled with NULLs, does not terminate the loop!

Keys and unique indices

Primary keys

NULLsarenever alowed in primary keys. A column can only be (part of) aPK it has been defined asNOT NULL,
either in the column definition or in a domain definition. Note that a“ CHECK (XXX ISNOT NULL)” constraint
won't do: you need a NOT NULL specifier right after the data type.

Warning

Firebird 1.5 has abug that allows primary keysto be defined on aNOT NULL column with NULL entries. How
these NULLs can exist in such a column will be explained later.

24

Firebird Null Guide

Unique keys and indices

Firebird 1.0

In Firebird 1.0, unique keys are subject to the same restrictions as primary keys: the column(s) involved must
be defined as NOT NULL. For unique indices, this is not necessary. However, when a unique index is created
the table may not contain any NULLSs or duplicate values, or the creation will fail. Once the index is in place,
insertion of NULLs or duplicate valuesis no longer possible.

Firebird 1.5 and higher

In Firebird 1.5 and up, unique keys and unique indices allow NULLS, and what's more: they even allow multiple
NULLs. With a single-column key or index, you can insert as many NULLs as you want in that column, but you
can insert each non-NULL value only once.

If the key or index is defined on multiple columnsin Firebird 1.5 and higher:
* You can insert multiple rows where all the key columns are NULL;

» But assoon asoneor morekey columnsare non-NULL, each combination of non-NULL values must be unique
in the table. Of course with the understanding that (1, NULL) is not the same as (NULL, 1).

Foreign keys

Foreign keys as such impose no restrictions with respect to NULLs. Foreign key columns must always reference
acolumn (or set of columns) that isa primary key or aunique key. A unique index on the referenced column(s)
is not enough.

Note

Inversionsup to andincluding 2.0, if you try to create aforeign key referencing atarget that is neither aprimary
nor a unique key, Firebird complainsthat no unique index can been found on the target — even if such an index
does exist. In 2.1, the message correctly states that no unique or primary key could be found.

Even if NULLs are absolutely forbidden in the target key (for instance if the target is a PK), the foreign key
column may still contain NULLS, unless thisis prevented by additional constraints.

CHECK constraints

It has been said severa times in this guide that if test expressions return NULL, they have the same effect as
f al se: the condition isnot satisfied. Starting at Firebird 2, thisisno longer truefor the CHECK constraint. To
comply with SQL standards, a CHECK is now passed if the condition resolves to NULL. Only an unambiguous
f al se outcome will cause the input to be rejected.

25

Firebird Null Guide

In practice, this means that checks like

check (value > 10000)

check (upper(value) in("A, 'B, "X))

check (val ue between 30 and 36)

check (Col A <> ColB)

check (Town not like 'Amst%)
..will rgject NULL input in Firebird 1.5, but let it passin Firebird 2. Existing database creation scripts will have
to be carefully examined before being used under Firebird 2. If adomain or column hasno NOT NULL constraint,
and a CHECK constraint may resolveto NULL (which usually — but not exclusively — happens because the input
isNULL), the script has to be adapted. Y ou can extend your check constraints like this:

check (value > 10000 and value is not null)

check (Town not like 'Amst% and Town is not null)
However, it's easier and clearer to add NOT NULL to the domain or column definition:

create domain DCENSUS int not null check (value > 10000)

create table MyPI aces

(
Town varchar (24) not null check (Town not like 'Arst%),

)

If your scripts and/or databases should function consistently under both old and new Firebird versions, make
sure that no CHECK constraint can ever resolveto NULL. Add“or ... is null” if youwantto allow NULL
input in older versions. Add NOT NULL constraintsor “and ... is not null” restrictions to disalow
it explicitly in newer Firebird versions.

SELECT DISTINCT

A SELECT DISTINCT statement considers all NULLs to be equal (NOT DISTINCT FROM each other), so if the
select ison asingle column it will return at most one NULL.

As mentioned earlier, Firebird 2.0 has a bug that causes the NULLS FIRST|LAST directive to fail under certain
circumstances with SELECT DISTINCT. For more details, see the bugs list.

User-Defined Functions (UDFs)

UDFs (User-Defined Functions) arefunctionsthat are not internal to the engine, but defined in separate modules.
Firebird shipswithtwo UDF libraries: i b_udf (awidely used InterBaselibrary) and f budf . Y ou can add more

26

Firebird Null Guide

libraries, e.g. by buying or downloading them, or by writing them yourself. UDFs can't be used out of the box;
they have to be “declared” to the database first. This also applies to the UDFsthat come with Firebird itself.

NULL <—> non-NULL conversions you didn't ask for

Teaching you how to declare, use, and write UDFsis outside the scope of thisguide. However, we must warn you
that UDFs can occasionally perform unexpected NULL conversions. This will sometimes result in NULL input
being converted to aregular value, and other timesin the nullification of valid input like' * (an empty string).

The main cause of this problem isthat with “old style” UDF calling (inherited from InterBase), it is not possible
to pass NULL asinput to the function. When aUDF like LTRI M(left trim) is called with a NULL argument, the
argument is passed to the function as an empty string. (Note: in Firebird 2 and up, it can also be passed asanull
pointer. Well get to that later.) From inside the function there is no way of telling if this argument represents a
real empty string or a NULL. So what does the function implementor do? He has to make a choice; either take
the argument at face value, or assume it was originally aNULL and treat it accordingly.

If thefunction result typeisapointer, returning NULL ispossibleevenif receiving NULL isn't. Thus, thefollowing
unexpected things can happen:

e Youcal aUDFwithaNULL argument. Itispassed asavalue, e.g. Oor' ' . Within the function, thisargument
is not changed back to NULL; anon-NULL result is returned.

* You cal a UDF with avalid argument like O or ' ' . It is passed as-is (obviously). But the function code
supposes that this value really representsa NULL, treatsit as a black hole, and returns NULL to the caller.

Both conversionsare usually unwanted, but the second probably more so than thefirst (better validate something
NULL than wreck something valid). To get back to our LTRI Mexample: in Firebird 1.0, this function returns
NULL if you feed it an empty string. Thisiswrong. In 1.5 it never returns NULL: even NULL strings (passed by
theengineas' ') are“trimmed” to empty strings. Thisis also wrong, but it's considered the lesser of two evils.
Firebird 2 has finally got it right: a NULL string gives a NULL result, an empty string is trimmed to an empty
string — at least if you declare the function in the right way.

Descriptors

Asearly asin Firebird 1.0, anew method of passing UDF arguments and results was introduced: “ by descriptor”.
Descriptors alow NULL signalling no matter the type of data. The f budf library makes ample use of this
technique. Unfortunately, using descriptors is rather cumbersome; it's more work and less fun for the UDF
implementor. But they do solve all the traditional NULL problems, and for the caller they're just as easy to use
asold-style UDFs.

Improvements in Firebird 2

Firebird 2 comes with a somewhat improved calling mechanism for old-style UDFs. The engine will now pass
NULL input as a null pointer to the function, if the function has been declared to the database with a NULL
keyword after the argument(s) in question:

decl are external function Itrim
cstring(255) null
returns cstring(255) free_it

27

Firebird Null Guide

entry point '"IB UDF Itrim nodul e_nane 'ib_udf';

This requirement ensures that existing databases and their applications can continue to function like before.
Leave out the NULL keyword and the function will behave like it did under Firebird 1.5.

Please note that you can't just add NULL keywordsto your declarations and then expect every function to handle
NULL input correctly. Each function has to be (re)written in such a way that NULLs are dealt with correctly.
Alwayslook at the declarations provided by the function implementor. For the functionsinthei b_udf library,
consulti b_udf 2. sql inthe Firebird UDF directory. Notice the 2 in the file name; the old-style declarations
areini b_udf . sql .

Thesearethei b_udf functionsthat have been updated to recognise NULL input and handle it properly:

e ascii_char

e | ower

e | padandr pad

e [trimandrtrim

e substr andsubstrl en

Mosti b_udf functions remain asthey were; in any case, passing NULL to an old-style UDF is never possible
if the argument isn't of areferenced type.

On aside note: don't usel ower, . t ri mand subst r * in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

“Upgrading” i b_udf functions in an existing database

If you are using an existing database with one or more of thefunctionslisted above under Firebird 2, and you want
to benefit from the improved NULL handling, run the scripti b_udf _upgr ade. sqgl against your database. It
islocated in the Firebird m sc\ upgr ade\ i b_udf directory.

Being prepared for undesired conversions

Theunsolicited NULL <—> non-NULL conversions described earlier usually only happen with legacy UDFs, but
there are alot of them around (most notably ini b_udf). Also, nothing will stop a careless implementor from
doing the same in a descriptor-style function. So the bottom lineis: if you use a UDF and you don't know how
it behaves with respect to NULL:

1. Look at its declaration to see how values are passed and returned. If it says “by descriptor”, it should be
safe (though it never hurtsto make sure). Ditto if arguments are followed by aNULL keyword. In all other
cases, walk through the rest of the steps.

2. If you have the source and you understand the language it's written in, inspect the function code.

3. Test the function both with NULL input and with input like O (for numerical arguments) and/or ' * (for
string arguments).

4. If thefunction performs an undesired NULL <—> non-NULL conversion, you'll haveto anticipateit in your
code before calling the UDF (see also Testing for NULL —if it matters, elsewhere in this guide).

The declarations for the shipped UDF libraries can be found in the Firebird subdirectory exanpl es (v. 1.0) or
UDF (v. 1.5 and up). Look at the files with extension . sql

28

Firebird Null Guide

More on UDFs

To learn more about UDFs, consult the InterBase 6.0 Developer's Guide (free at http://www.ibphoenix.com/
downloads/60DevGuide.zip), Using Firebird and the Firebird Reference Guide (both on CD), or the Firebird
Book. CD and book can be purchased via http://www.ibphoenix.com.

Converting to and from NULL

Substituting NULL with a value

The COALESCE function

The COALESCE function in Firebird 1.5 and higher can convert NULL to most anything else. This enables you
to perform an on-the-fly conversion and use the result in your further processing, without the need for “i f
(MyExpression is null) then” or similar constructions. The function signatureis:

COALESCE(Exprl, Expr2, Expr3, ...)

CQALESCE returns the value of the first non-NULL expression in the argument list. If all the expressions are
NULL, it returns NULL.

Thisis how you would use COAL ESCE to construct a person's full name from the first, middle and last names,
assuming that some middle name fields may be NULL:

sel ect FirstNane
|| coalesce(' ' || Mddl eNane, "')
[1 " ' || LastNane

from Persons

Or, to create an as-informal-as-possible name from atabl e that a so includes nicknames, and assuming that both
nickname and first name may be NULL:

sel ect coal esce (Nicknane, FirstNane, 'M./Ms.')
[| " ' || LastNane
from O her Per sons

COALESCE will only help you out in situations where NULL can be treated in the same way as some allowed

value for the datatype. If NULL needs special handling, different from any other value, your only option isto
use an IF or CASE construct after all.

Firebird 1.0: the *NVL functions

Firebird 1.0 doesn't have COALESCE. However, you can use four UDFsthat provide agood part of its function-
ality. These UDFsresidein thef budf lib and they are:

29

http://www.ibphoenix.com/downloads/60DevGuide.zip
http://www.ibphoenix.com/downloads/60DevGuide.zip
http://www.ibphoenix.com

Firebird Null Guide

* i NVL, for integer arguments

i 64NVL, for bigint arguments

dNVL, for double precision arguments
sNVL, for strings

The* NVL functionstake exactly two arguments. Like COALESCE, they returnthefirst argument if it'snot NULL;
otherwise, they return the second. Please hotethat the Firebird 1.0 f budf lib—and therefore, the* NVL function
set —isonly available for Windows.

Converting values to NULL

Sometimes you want certain values to show up as NULL in the output (or intermediate output). This doesn't
happen often, but it may for instance be useful if you want to exclude certain values from summing or averaging.
The NULLI F functions can do this for you, though only for one value at the time.

Firebird 1.5 and up: the NULLI F function

The NULLIF internal function takes two arguments. If their values are equal, the function returns NULL. Oth-
erwise, it returns the value of the first argument.

A typica useise.g.
select avg(nullif(Wight, -1)) from FatPeopl e

which will give you the average weight of the FatPeople population, without counting those with weight -1.
(Remember that aggregate functions like AVG exclude all NULL fields from the computation.)

Elaborating on this example, suppose that until now you have used the value -1 to indicate “weight unknown”

because you weren't comfortable with NULLs. After reading this guide, you may feel brave enough to give the
command:

updat e Fat People set Weight = nullif(Weight, -1)

Now unknown weights will really be unknown.

Firebird 1.0: the *nul | i f UDFs

Firebird 1.0.x doesn't havethe NUL LI Finternal function. Instead, it hasfour user-defined functionsin thef budf
lib that serve the same purpose:

e inullif,forinteger arguments

e i64nullif,for bigint arguments

e dnul lif,for double precision arguments
e snullif,forstrings

Please note that the Firebird 1.0 f budf lib — and therefore, the *nul |1 f function set —is only available for
Windows.

30

Firebird Null Guide

Warning

The Firebird 1 Release Notes state that, because of an engine limitation, these UDFs return a zero-equivalent
if the arguments are equal. This is incorrect: if the arguments have the same value, the functions al return a
true NULL.

However —they also return NULL if the first argument isareal value and the second argument isNULL. Thisis
awrong result. The Firebird 1.5 internal NULLI F function correctly returns the first argument in such a case.

Altering populated tables

If your table already contains data, and you want to add a non-nullable column or change the nullability of an
existing column, there are some consequencesthat you should know about. We'll discussthevariouspossibilities
in the sections below.

Adding a non-nullable field to a populated table

Suppose you have this table:

Table 8. Adventurestable

Name Bought Price
Maniac Mansion 12-Jun-1995 $49,--
Zak McKracken 9-Oct-1995 $54,95

Y ou have already entered some adventure games in this table when you decide to add a non-nullable ID field.
There are two ways to go about this, both with their own specific problems.

Adding a NOT NULL field

Thisis by far the preferred method in general, but it causes some special problemsif used on a populated table,
as you will seein amoment. First, add the field with this statement:

alter table Adventures add id int not null
After committing, the new 1D fields that have been added to the existing rows will al be NULL. In this special

case, Firebird alows invalid data to be present in a NOT NULL column. It will also back them up without
complaining, but it will refuse to restore them, precisely because of this violation of the NOT NULL constraint.

Note

Firebird 1.5 (but not 1.0 or 2.0) even allows you to make such a column the primary key!

31

Firebird Null Guide

False reporting of NULLs as zeroes

To make matters worse, Firebird lies to you when you retrieve data from the table. With isgl and many other
clients, “SELECT * FROM ADVENTURES” will return this dataset:

Table 9. Result set after addinga NOT NULL column

Name Bought Price ID
Maniac Mansion 12-Jun-1995 $49,-- 0
Zak McKracken 9-Oct-1995 $54,95 0

Of course this will make most people think “OK, cool: Firebird used a default value of O for the new fields —
nothing to worry about”. But you can verify that the ID fields are really NULL with these queries:

* SELECT * FROM ADVENTURES WHERE ID = 0 (returns empty set)
e SELECT * FROM ADVENTURESWHERE ID ISNULL (returns set shown above, with false 0's)
e SELECT * FROM ADVENTURESWHERE ID ISNOT NULL (returns empty set)

Another type of query hinting that something fishy is going on is the following:
e SELECT NAME, ID, ID+3 FROM ADVENTURES

Such a query will return 0 in the “ID+3" column. With atrue O ID it should have been 3. The correct result
would be NULL, of course!

With a(VAR)CHAR column, you would have seen phoney emptystrings (). With aDATE column, phoney “zero
dates’ of 17 November 1858 (epoch of the Maodified Julian Day). In al cases, the true state of the datais NULL.

Explanation
What's going on here?

When a client application like isgl queries the server, the conversation passes through several stages. During
one of them — the “describe” phase — the engine reports type and nullability for each column that will appear in
theresult set. It does thisin adata structure which islater also used to retrieve the actual row data. For columns
flagged as NOT NULL by the server, there is no way to return NULLs to the client — unless the client flips back
the flag before entering the data retrieval stage. Most client applications don't do this. After all, if the server
assures you that a column can't contain NULLs, why would you think you know better, override the server's
decision and check for NULLs anyway? And yet that's exactly what you should do if you want to avoid the risk
of reporting false values to your users.

FSQL

Firebird expert Ivan Prenosil has written a free command-line client that works almost the same as isgl, but —
among other enhancements — reports NULLSs correctly, even in NOT NULL columns. It's called FSQL and you
can download it here:

http://www.volny.cz/iprenosil/interbase/fsgl.htm

32

http://www.volny.cz/iprenosil/interbase/fsql.htm

Firebird Null Guide

Ensuring the validity of your data

Thisiswhat you should do to make surethat your dataare valid when adding aNOT NULL column to apopul ated
table:

» To prevent the nulls-in-not-null-columns problem from occurring at al, provide a default value when you
add the new column:

alter table Adventures add id int default -1 not null

Default values are normally not applied when adding fields to existing rows, but with NOT NULL fieldsthey
are.

» Else, explicitly set the new fields to the value(s) they should have, right after adding the column. Verify that
they areall valid with a“ SELECT ... WHERE ... ISNULL" query, which should return an empty set.

« If the damage has already been done and you find yourself with an unrestorable backup, use ghak's - n switch
toignore validity constraints when restoring. Then fix the data and reinstate the constraints manually. Again,
verify with a“WHERE ... ISNULL" query.

Important

Firebird versions up to and including 1.5 have an additional bug that causes gbak to restore NOT NULL con-
straints even if you specify - n. With those versions, if you have backed up a database with NULL datain NOT
NULL fields, you arereally up the creek. Solution: install 1.5.1 or higher, restore with gbak - n and fix your data.

Adding a CHECKed column
Using a CHECK constraint is another way to disallow NULL entriesin a column:
alter table Adventures add id int check (id is not null)

If you do it thisway, a subsequent SELECT will return:

Table 10. Result set after adding a CHECK ed field

Name Bought Price ID
Maniac Mansion 12-Jun-1995 $49,-- <null>
Zak McKracken 9-Oct-1995 $ 54,95 <null>

Well, at least now you can seethat thefieldsare NULL! Firebird does not enforce CHECK constraints on existing
rows when you add new fields. The same is true if you add checks to existing fields with ADD CONSTRAINT
or ADD CHECK.

Thistime, Firebird not only tolerates the presence and the backing up of the NULL entries, but it will also restore
them. Firebird's gbak tool does restore CHECK constraints, but doesn't apply them to the existing data in the
backup.

33

Firebird Null Guide

Note

Even with the - n switch, gbak restores CHECK constraints. But since they are not used to validate backed-up
data, thiswill never lead to afailed restore.

Thisrestorability of your NULL data despite the presence of the CHECK constraint is consistent with the fact that
Firebird allows them to be present in the first place, and to be backed up as well. But from a pragmatical point
of view, there's a downside: you can now go through cycle after cycle of backup and restore, and your “illegal”
data will survive without you even receiving a warning. So again: make sure that your existing rows obey the
new ruleimmediately after adding the constrained column. The “default” trick won't work here; you'll just have
to remember to set the right value(s) yourself. If you forget it now, chances are that your outlawed NULLs will
survive for along time, as there won't be any wake-up calls later on.

Adding a non-nullable field using domains
Instead of specifying data types and constraints directly, you can also use domains, e.g. like this:

create domain icnn as int check (value is not null);
alter table Adventures add id icnn;

For the presence of NULL fields, returning of false O's, effects of default values etc., it makes no difference at
all whether you take the domain route or the direct approach. However, aNOT NULL constraint that came with
adomain can later be removed; adirect NOT NULL on the column will stay forever.

Making existing columns non-nullable

Making an existing column NOT NULL

Y ou cannot add NOT NULL to an existing column, but there's a simple workaround. Suppose the current type
isint, then this:

create domain intnn as int not null;
alter table MyTable alter MyCol um type intnn;

will change the column type to “int not null”.

If the table already had records, any NULLs in the column will remain NULL, and again Firebird will report
them as 0 to the user when queried. The situation is amost exactly the same as when you add a NOT NULL
column (see Adding a NOT NULL field). The only difference is that if you give the domain (and therefore the
column) a default value, this time you can't be sure that it will be applied to the existing NULL entries. Tests
show that sometimes the default is applied to all NULLs, sometimes to none, and in afew cases to some of the
existing entries but not to others! Bottom line: if you change acolumn'stype and the new type includes adefault,
double-check the existing entries — especially if they “seem to be” 0 or zero-equivalents.

Adding a CHECK constraint to an existing column
There are two ways to add a CHECK constraint to a column:

alter table Stk add check (Ant is not null)

34

Firebird Null Guide

alter table Stk add constraint AmtNotNull check (Am is not null)

Thesecond formispreferred becauseit givesyou an easy handleto drop the check, but the constraintsthemselves
function exactly the same. Asyou might have expected, existing NULLsin the columnwill remain, can be backed
up and restored, etc. etc. — see Adding a CHECKed column.

Making non-nullable columns nullable again
If you used a CHECK constraint to make the column non-nullable, you can simply drop it again:
alter table Stk drop constraint Ant Not Null

If you haven't named the constraint yourself but added the CHECK directly to the column or table, you must
first find out its name before you can drop it. This can be done with the isgl “SHOW TABLE” command (in this
case: SHOW TABLE STK).

In the case of aNOT NULL constraint, if you know its name you can just drop it:
alter table Stk drop constraint NN_Ant

If you don't know the nameyou cantry isgl's“ SHOW TABLE” again, but thistimeit will only show the constraint
nameif it is user-defined. If the name was generated by the engine, you have to use this SQL to dig it up:

sel ect rc.rdb$constrai nt_nane
from rdb$relation_constraints rc
join rdb$check _constraints cc
on rc.rdb$constraint_nane = cc.rdb$constrai nt_nane

where rc.rdb$constraint_type = 'NOT NULL'
and rc.rdb$rel ati on_nane = ' <Tabl eNane>'
and cc.rdb$trigger_nane = '<Fiel dNane>'

Don't break your head over some of the table and field names in this statement; they are illogical but correct.
Make sure to uppercase the names of your table and field if they were defined case-insensitively. Otherwise,
match the case exactly.

If the NOT NULL constraint came with a domain, you can also remove it by changing the column type to a
nullable domain or built-in datatype:

alter table Stk alter Ant type int
Any concealed NULLSs, if present, will now become visible again.

No matter how you removed the NOT NULL constraint, commit your work and close all connections to the
database. After that, you can reconnect and insert NULLsin the column.

Testing for NULL and equality in practice

This section contains some practical tips and examples that may be of use to you in your everyday dealings
with NULLSs. It concentrates on testing for NULL itself and testing the (in)equality of two things when NULLs
may be involved.

35

Firebird Null Guide

Testing for NULL — if it matters

Quite often, you don't need to take special measures for fields or variables that may be NULL. For instance, if
you do this:

select * from Customers where Town = 'Ral ston'

you probably don't want to see the customers whose town is unspecified. Likewise:
if (Age >= 18) then CanVote = 'Yes'

doesn't include people of unknown age, which is also defensible. But:

if (Age >= 18) then CanVote = 'Yes';
el se CanVote = 'No';

seemslessjustified: if you don't know aperson's age, you shouldn't explicitly deny her theright to vote. Worse,
this:

if (Age < 18) then CanVote = 'No';
el se CanVote = 'Yes';

won't have the same effect as the previous. If some of the NULL ages are in reality under 18, you're now letting
minors vote!

The right approach hereisto test for NULL explicitly:

i f (Age is null) then CanVote = 'Unsure';
else if (Age >= 18) then CanVote = 'Yes';
el se CanVote = 'No';

Since this code covers more than two possibilities, it's more elegant to use the CASE syntax (availablein Firebird
1.5 and up):

CanVot e = case
when Age is null then 'Unsure’
when Age >= 18 then ' Yes'
el se ' No'
end;
Or, prettier:
CanVote = case

when Age >= 18 then ' Yes'
when Age < 18 then ' No'
el se ' Unsure'

end;

Equality tests

Sometimes you want to find out if two fields or variables are the same and you want to consider them equal if
they are both NULL. The way to do this depends on your Firebird version.

36

Firebird Null Guide

Firebird 2.0 and up

In Firebird 2 and higher, you test for null-encompassing equality with DISTINCT. This has already been dis-
cussed, but here's a quick recap. Two expressions are considered:

» DISTINCT if they have different values or if one of them is NULL and the other isn't;
* NOT DISTINCT if they have the same value or if both of them are NULL.

[NOT] DISTINCT awaysreturnst r ue or f al se, never NULL or something else. Examples:
if (Ais distinct fromB) then...
if (Buyerl is not distinct fromBuyer2) then...

Skip the next section if you're not interested in the pre-Firebird-2 stuff.

Earlier Firebird versions

Pre-2.0 versions of Firebird don't support this use of DISTINCT. Consequently, the tests are a little more com-
plicated and there are some pitfalls to avoid.

The correct equality test for pre-2.0 Firebird versionsis:
if (A=Bor Ais null and Bis null) then...
or, if you want to make the precedence of the operations explicit:
if ((A=B) or (Ais null and Bis null)) then...

A word of warning though: if exactly one of A and B is NULL, the test expression becomes NULL, not f al se!
ThisisOK inani f statement, and we can even add an el se clause which will be executed if A and B are not
equal (including when oneis NULL and the other isn't):

if (A=Bor Ais null and Bis null)
then ...stuff to be done if A equals B...
else ...stuff to be done if A and B are different...

But don't get the bright idea of inverting the expression and using it as an inequality test:

/* Don't do this! */
if (not(A=Bor Ais null and Bis null))
then ...stuff to be done if Adiffers fromB...

The above code will work correctly if A and B are both NULL or both non-NULL. But it will fail to execute the
t hen clauseif exactly one of them is NULL.

If you only want something to be doneif A and B are different, either use one of the correct expressions shown
above and put a dummy statement in the t hen clause (starting at 1.5, an empty begi n. . end block is also
allowed), or use thislonger test expression:

/* This is a correct inequality test for pre-2 Firebird: */
if (A<>B

37

Firebird Null Guide

or Ais null and B is not null
or Ais not null and Bis null) then...

Remember, al thisis only necessary in pre-2.0 Firebird versions. From version 2 onward, the inequality testis
simply “if (Ais distinct fromB)”.

Summary of (in)equality tests

Table 11. Testing (in)equality of A and B in different Firebird versions

Test type Firebird version
<=15x >=2.0
Equality A=Bor Ais null and B is null Ais not distinct fromB
Inequality A<>B Ais distinct fromB
or Ais null and B is not null
or Ais not null and B is null

Please keep in mind that with Firebird 1.5.x and earlier:

» theequality test returns NULL if exactly one operand is NULL;
» theinequality test returns NULL if both operands are NULL.

InanIF or WHERE context, these NULL resultsact asf al se —whichisfinefor our purposes. But remember that
an inversion with NOT() will also return NULL —not “t r ue”. Also, if you use the 1.5-and-earlier tests within
CHECK constraints in Firebird 2 or higher, be sure to read the section CHECK constraints, if you haven't done

so already.

Tip

Most JOINs are made on equality of fields in different tables, and use the “=" operator. This will leave out
al NULL-NULL pairs. If you want NULL to match NULL, pick the equality test for your Firebird version from
the table above.

Finding out if a field has changed

In triggers you often want to test if a certain field has changed (including: gone from NULL to non-NULL or
vice versa) or stayed the same (including: kept its NULL state). Thisis nothing but a special case of testing the
(in)equality of two fields, so here again our approach depends on the Firebird version.

In Firebird 2 and higher we use this code:
if (New. Job is not distinct fromd d. Job)

then ...Job field has stayed the sane...
else ...Job field has changed. ..

And in older versions:

38

Firebird Null Guide

if (New. Job = A d.Job or New. Job is null and O d.Job is null)

then ...Job field has stayed the sane...
else ...Job field has changed. ..
Summary

NULL in anutshell:

NULL means unknown.

To exclude NULLs from adomain or column, add “NOT NULL" after the type name.
Tofind out if A isNULL, use“A IS[NOT] NULL".

Assigning NULL isdone like assigning values: with “A = NULL” or an insert list.

To find out if A and B are the same, with the understanding that all NULLSs are the same and different from
anything else, use “A IS[NOT] DISTINCT FROM B” in Firebird 2 and up. In earlier versions the tests are:

/1 equality:
A=Bor Ais null and Bis null

/1 inequality:

A <> B

or Ais null and B is not null
or Ais not null and Bis null

In Firebird 2 and up you can use NULL literals in just about every situation where a regular value is also
allowed. In practice this mainly givesyou alot more ropeto hang yourself.

Most of the time, NULL operands make the entire operation return NULL. Noteworthy exceptions are:

“NULL ortrue” evaluatestotr ue;
“NULL andf al se” evaluatestof al se.

The IN, ANY|SOME and ALL predicates may (but do not always) return NULL if either the left-hand side
expression or alist/subresult element isNULL.

The [NOT] EXISTS predicate never returns NULL. The [NOT] SINGULAR predicate never returns NULL in
Firebird 2.1 and up. It isbrokenin al previous versions.

In aggregate functions only non-NULL fields are involved in the computation. Exception: COUNT(*).
In ordered sets, NULLs are placed...

- 1.0: At the bottom;
- 1.5: At the bottom, unless NULLS FIRST specified;
- 2.0: Atthe“small end” (topif ascending, bottomif descending), unlessoverridden by NULLSFIRST/LAST.

If aWHERE or HAVING clause evaluates to NULL, the row is not included in the result set.

If the test expression of an IF statement is NULL, the THEN block is skipped and the EL SE block executed.

39

Firebird Null Guide

e A CASE statement returns NULL:

- If the selected result isNULL.
- If no matches are found (simple CASE) or no conditions aret r ue (searched CASE) and there is no ELSE
clause.

* Inasimple CASE statement, “CASE <nul | _expr >" does not match “WHEN <nul | _expr >".
» If thetest expression of a WHILE statement evaluates to NULL, the loop is not (re)entered.

* A FOR statement is not exited when NULLSs are received. It continues to loop until either all the rows have
been processed or it isinterrupted by an exception or aloop-breaking PSQL statement.

* InPrimary Keys, NULLs are never allowed.
* InUnique Keys and Unique Indices, NULLs are

- not allowed in Firebird 1.0;
- allowed (even multiple) in Firebird 1.5 and higher.

* InForeign Key columns, multiple NULLs are allowed.
» If aCHECK constraint evaluatesto NULL, theinput is

- rejected under Firebird 1.5 and earlier;
- accepted under Firebird 2.0 and higher.

* SELECT DISTINCT considers all NULLs equal: in asingle-column select, at most oneis returned.
e UDFs sometimes convert NULL <—> non-NULL in a seemingly random manner.

» The COALESCE and * NVL functions can convert NULL to avalue.

* TheNULLI F family of functions can convert valuesto NULL.

» If you add a NOT NULL column without a default value to a populated table, all the entries in that column
will be NULL upon creation. Most clients however —including Firebird'sisgl tool —will falsely report them
as zeroes (0 for numerical fields, ' ' for string fields, etc.)

» If you change a column's datatype to a NOT NULL domain, any existing NULLs in the column will remain
NULL. Again most clients—including isgl —will show them as zeroes.

Remember, this is how NULL works in Firebird SQL. There may be (at times subtle) differences with other
RDBM Ses.

40

Firebird Null Guide

Appendix A:
NULL-related bugs in Firebird

Attention: both historic and current bugs are listed in the sections below. Always look if and when a bug has
been fixed before assuming that it existsin your version of Firebird.

Bugs that crash the server

EXECUTE STATEMENT with NULL argument

EXECUTE STATEMENT with a NULL argument crashed Firebird 1.5 and 1.5.1 servers. Fixed in 1.5.2.

EXTRACT from NULL date

In 1.0.0, EXTRACT from aNULL date would crash the server. Fixed in 1.0.2.

FIRST and SKIP with NULL argument

FIRST and SKIP crash aFirebird 1.5.n or lower server if given aNULL argument. Fixed in 2.0.

LIKE with NULL escape

Using LIKE with a NULL escape character would crash the server. Fixed in 1.5.1.

Other bugs

NULLS in NOT NULL columns
NULLs can exist in NOT NULL columnsin the following situations:

e If youadd aNOT NULL column to a popul ated table, the fields in the newly added column will all be NULL.
 If you makean existing column NOT NULL, any NULLsalready present in the columnwill remaininthat state.

Firebird allows these NULLs to stay, also backs them up, but refuses to restore them with gbak. See Adding a
NOT NULL field and Making an existing column NOT NULL.

41

Firebird Null Guide

lllegal NULLs returned as 0, ' ', etc.

If aNOT NULL column contains NULLSs (see previous bug), the server will still describeit as non-nullableto the
client. Since most clients don't question this assurance from the server, they will present these NULLs as O (or
equivalent) to the user. See False reporting of NULLS as zeroes.

Primary key with NULL entries

The following bug appeared in Firebird 1.5: if you had a table with some rows and you added a NOT NULL
column (which automatically creates NULL entriesin the existing rows—see above), you could make that column
the primary key even though it had NULL entries. In 1.0 thisdidn't work because of the stricter rulesfor UNIQUE
indices. Fixed in 2.0.

SUBSTRING results described as non-nullable
The engine describes SUBSTRING result columns as non-nullable in the following two cases:

» If thefirst argument isastring literal, asin “SUBSTRING('Ootchie-coo' FROM 5 FOR 2)".
 |If thefirst argument isa NOT NULL column.

This is incorrect because even with a known string, substrings may be NULL, namely if the one of the other
argumentsisNULL. Inversions 1.* this bug didn't bite: the FROM and FOR args had to be literal values, so they
could never be NULL. But as from Firebird 2, any expression that resolves to the required data type is allowed.
And although the engine correctly returns NULL whenever any argument isNULL, it describesthe result column
as non-nullable, so most clients show the result as an empty string.

This bug seemsto be fixed in 2.1.

Gbak -n restoring NOT NULL

Gbak - n[o_val i di ty] restored NOT NULL constraintsin early Firebird versions. Fixed in 1.5.1.

IN, =ANY and =SOME with indexed subselect

Let A be the expression on the left-hand side and S the result set of the subselect. In versions prior to 2.0, “IN”,
“=ANY" and “=SOME" return false instead of NULL if an index is active on the subselect column and:

e either AisNULL and S doesn't contain any NULLS;
e orAisnot NULL, Aisnot foundin S, and S contains at |east one NULL.

Seethewarningsinthe IN and ANY sections. Workaround: use “<> ALL” instead. Fixed in 2.0.

ALL with indexed subselect

With every operator except “<>", ALL may return wrong results if an index is active on the subselect column.
This can happen with our without NULLs involved. Seethe ALL bug warning. Fixed in 2.0.

42

Firebird Null Guide

SELECT DISTINCT with wrong NULLS FIRST|LAST ordering

Firebird 2.0 has the following bug: if a SELECT DISTINCT is combined with an [ASC] NULLS LAST or DESC
NULLS FIRST ordering, and the ordering field(s) form(s) the beginning (but not the whole) of the select list,
every field in the ORDER BY clause that is followed by afield with a different (or no) ordering gets the NULLs
placed at the default relative location, ignoring the NULLS XXX directive. Fixed in 2.0.1 and 2.1.

UDFs returning values when they should return NULL

This should definitely be considered a bug. If an angle is unknown, don't tell me that its cosine is 1! Although
the history of these functions is known and we can understand why they behave like they do (see User-Defined
Functions), it's still wrong. Incorrect results are returned and this should not happen. Most of the math functions
ini b_udf , aswell as some others, have this bug.

UDFs returning NULL when they should return a value

Thisisthe complement of the previous bug. LPAD for instance returns NULL if you want to pad an empty string
with 10 dots. Thisfunction and others are fixed in 2.0, with the annotation that you must explicitly declare them
with the NULL keyword or they'll show the old — buggy — behaviour. LTRI Mand RTRI Mtrim empty stringsto
NULL in Firebird 1.0.n. Thisisfixed in 1.5 at the expense of returning ' ' when trimming a NULL string, and
only fully fixed in 2.0 (if declared with the NULL keyword).

SINGULAR inconsistent with NULL results
NOT SINGULAR sometimes returns NULL where SINGULAR returnst r ue or f al se. Fixedin 2.0.
SINGULAR may wrongly return NULL, in an inconsistent but reproducible manner. Fixed in 2.1.

See the section on SINGULAR.

43

Firebird Null Guide

Appendix B:
Document history

Theexact filehistory isrecorded in themanual modulein our CV Stree; see http://sourceforge.net/cvs/2group

1d=9028

Revision History
0.1 8 Apr 2005 PV First edition.

0.2 15Apr2005 PV Mentioned that Fb 2.0 legalises “A = NULL" comparisons.
Changed text in “Testing if somethingis NULL".
Slightly altered “Dealing with NULLS" section.

1.0 24 Jan 2007 PV Thisisamajor update, with so much new material added that the docu-
ment has grown to around 4 times its former size. In addition, much of
the existing text has been reorganised and thoroughly reworked. It's not
feasible to give a summary of all the changes here. Consider this a new
guide with 15-25% old material. The most important additions are:

e NULL literas

e IS[NOT] DISTINCT FROM

 Internal functions and directives

e Predicates: IN, ANY, SOME, ALL, EXISTS, SINGULAR
» Searches (WHERE)

» Sorts (ORDER BY)

* GROUPBY and HAVING

e CASE, WHILE and FOR

» Keysandindices

e CHECK constraints

e SELECT DISTINCT

e Converting valuesto NULL with NULLI F
e Altering populated tables

* Bugslist

» Alphabetical index

101 26 Jan 2007 PV Making non-nullable columns nullable again: Provisory fix of error re-
garding removal of NOT NULL constraints.

http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028

Firebird Null Guide

Appendix C:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense’); you may only use this Documentation if you comply with the terms of this License. Copies of the
License are available at http://www.firebirdtest.com/file/documentation/reference_manuals/firebird licenses/
Public-Documentation-License.pdf (PDF) and http://www.firebirdtest.com/en/public-documentation-license/
(HTML).

The Original Documentation istitled Firebird Null Guide.
The Initial Writer of the Original Documentation is; Paul Vinkenoog.

Copyright (C) 2005—2007. All Rights Reserved. Initial Writer contact: paulvink at users dot sourceforge dot net.

45

http://www.firebirdtest.com/file/documentation/reference_manuals/firebird_licenses/Public-Documentation-License.pdf
http://www.firebirdtest.com/file/documentation/reference_manuals/firebird_licenses/Public-Documentation-License.pdf
http://www.firebirdtest.com/en/public-documentation-license/

Alphabetical index

A

Adding CHECKed columns, 33

Adding non-nullable columns, 31

Adding NOT NULL columns, 31
using domains, 34

Aqggregate functions, 19
GROUPBY, 20
HAVING, 21

ALL, 13
bug with indexed subselect, 42
results, 15

Altering tables, 31

AND operator, 8

ANY, 13
bug with indexed subselect, 42
results, 14

Assigning NULL, 5

AVG, 19

B
Backup, 31
BETWEEN, 7
Boolean operations, 8
Bugsligt, 41
other bugs, 41
server-crashers, 41

C
CASE, 23
CHECK constraints, 13, 25
COALESCE, 29
Comparison operations, 7
Conjunctions, 8
CONTAINING, 7
Conversions, 29
from avalueto NULL, 30
NULLIF internal function, 30
NULLIF UDFs, 30
from NULL to avaue, 29
COALESCE, 29
NVL functions, 29
unwanted, 27
prepare for, 28
COUNT, 19

D
Descriptors, 27

Directives, 10

Digunctions, 8

DISTINCT
SELECT DISTINCT, 19, 26, 43
testing distinctness, 5, 37

E

Equality tests, 36
in Firebird 1.*, 37
in Firebird 2+, 37
summary, 38

EXISTS, 16

F
Fase, 8
beating NULL, 9
FIRST, 10
FOR loops, 24
Foreign keys, 25
FSQL, 32
Functions
aggregate, 19
GROUPBY, 20
interna, 9

G
gbak, 31

-n switch, 33
GROUPBY, 20

H
HAVING, 21

I
|F statements, 22
IN
bug with indexed subselect, 42
IN predicate, 11
in CHECK constraints, 13
results, 12
Indices, 24
unigue, 25
Internal functions, 9
IS[NOT] DISTINCT FROM, 5, 37
IS[NOT] NULL, 5

Alphabetical index

J
JOIN, 38

K

Keys, 24, 25
foreign, 25
primary, 24
unique, 25

L
LIKE, 7
LIST, 19

M

Mathematical operations, 7
MAX, 19

MIN, 19

N

NOT NULL, 4
direct, 31
remove, 35
viadomain, 34

add, 34
remove, 35

NOT operator, 8

NULL, 4
and GROUPBY, 20
assign, 5
bugs, 41
conversions from, 29
conversions to, 30
conversions to/from, 29
disalow, 4
falsely reported as 0, 32
in anutshell, 39
in aggregate functions, 19
in boolean operations, 8
in CHECK constraints, 25
in conjunctions, 8
in digunctions, 8
in foreign keys, 25
in |F statements, 22
inindices, 24
ininternal functions, 9
in JOINs, 38
inkeys, 24
in NOT NULL columns, 31
in operations, 6
in primary keys, 24
in searches, 17
in sorts, 18

in UDFs, 26

in unique keys and indices, 25

literal, 6

NULL keyword in UDFs, 27

test for, 5

in practice, 35

What isit?, 4

with IN(), 11
NULL keyword in UDFs, 27
NULLIF internal function, 30
NULLIF UDFs, 30
NULLSFIRST, 18
NULLSLAST, 18
NVL functions, 29

O

OR operator, 8
ORDER BY, 18
Ordering, 18

P
Predicates, 10
ANY, SOME and ALL, 13
results, 14
EXISTS, 16
IN, 11
results, 12
SINGULAR, 16
Primary keys, 24

R
Restoring
problem with NULLs, 31
solution, 33
ROWS, 10

S

Searches, 17

SELECT DISTINCT, 19, 26, 43

SINGULAR, 16

SKIP, 10

SOME, 13
bug with indexed subselect, 42
results, 14

Sorting, 18

STARTING WITH, 7

String operations, 7

SUM, 19

Summary, 39

T
Tables

Alphabetical index

add CHECK to columns, 34
add CHECK ed columns, 33
add non-nullable columns, 31
add NOT NULL columns, 31
using domains, 34
altering, 31
make columns non-nullable, 34
make columns NOT NULL, 34
make columns nullable, 35
Testing for NULL, 5
in practice, 35
True, 8
beating NULL, 9

U
UDFs, 26
by descriptor, 27
links, 29
NULLIF functions, 30
NVL functions, 29
unwanted conversions, 27
prepare for, 28
with NULL keyword, 27
Unique indices, 25
Unique keys, 25

W
WHERE, 17
WHILE loops, 24

48

	Firebird Null Guide
	Table of Contents
	What is NULL?
	NULL support in Firebird SQL
	Disallowing NULL
	Testing for NULL
	Assigning NULL
	Testing DISTINCTness (Firebird 2+)
	The NULL literal
	Firebird 1.5 and below
	Firebird 2.0 and up

	NULL in operations
	Mathematical and string operations
	Boolean operations
	More logic (or not)

	Internal functions and directives
	Internal functions
	FIRST, SKIP and ROWS

	Predicates
	The IN predicate
	With an empty list
	With a NULL test expression
	With NULLs in the list
	IN() results
	IN() in CHECK constraints

	The ANY, SOME and ALL quantifiers
	Result values

	EXISTS and SINGULAR
	EXISTS
	SINGULAR

	Searches
	Sorts
	Aggregate functions
	The GROUP BY clause
	Counting frequencies

	The HAVING clause

	Conditional statements and loops
	IF statements
	CASE statements
	WHILE loops
	FOR loops

	Keys and unique indices
	Primary keys
	Unique keys and indices
	Firebird 1.0
	Firebird 1.5 and higher

	Foreign keys

	CHECK constraints
	SELECT DISTINCT
	User-Defined Functions (UDFs)
	NULL <–> non-NULL conversions you didn't ask
 for
	Descriptors
	Improvements in Firebird 2
	“Upgrading” ib_udf functions in an existing database

	Being prepared for undesired conversions
	More on UDFs

	Converting to and from NULL
	Substituting NULL with a value
	The COALESCE function
	Firebird 1.0: the *NVL functions

	Converting values to NULL
	Firebird 1.5 and up: the NULLIF function
	Firebird 1.0: the *nullif UDFs

	Altering populated tables
	Adding a non-nullable field to a populated table
	Adding a NOT NULL field
	False reporting of NULLs as zeroes
	Explanation
	FSQL

	Ensuring the validity of your data

	Adding a CHECKed column
	Adding a non-nullable field using domains

	Making existing columns non-nullable
	Making an existing column NOT NULL
	Adding a CHECK constraint to an existing column

	Making non-nullable columns nullable again

	Testing for NULL and equality in practice
	Testing for NULL – if it matters
	Equality tests
	Firebird 2.0 and up
	Earlier Firebird versions
	Summary of (in)equality tests

	Finding out if a field has changed

	Summary
	A. NULL-related bugs in Firebird
	Bugs that crash the server
	EXECUTE STATEMENT with NULL argument
	EXTRACT from NULL date
	FIRST and SKIP with NULL argument
	LIKE with NULL escape

	Other bugs
	NULLs in NOT NULL columns
	Illegal NULLs returned as 0, '', etc.
	Primary key with NULL entries
	SUBSTRING results described as non-nullable
	Gbak -n restoring NOT NULL
	IN, =ANY and =SOME with indexed subselect
	ALL with indexed subselect
	SELECT DISTINCT with wrong NULLS FIRST|LAST ordering
	UDFs returning values when they should return NULL
	UDFs returning NULL when they should return a value
	SINGULAR inconsistent with NULL results

	B. Document history
	C. License notice
	Alphabetical index

